Extension simple - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Définition

Soit L une extension de corps de K.

  • L'extension L est dite simple si et seulement s'il existe l de L tel que K(l), la sous-K-extension de L engendrée par l, soit égale à L.
  • Soit L une extension simple et g un élément de L tel que L soit égal à K(g). Alors g est appelé générateur de L sur K.

Comme démontré dans l'article extension algébrique, il est alors possible d'identifier K et son image dans la clôture algébrique et L avec K(l). Cette identification est réalisée dans toute la suite de l'article.

Propriétés

Soit Ω une clôture algébrique de K.

  • Si l'extension est séparable et finie, alors l'extension est simple et il existe exactement n morphismes de corps de L dans Ω laissant invariant K.
  • Si l'extension est simple et s'il existe un générateur séparable, alors l'extension est séparable.
  • S'il existe exactement n morphismes de corps de L dans Ω laissant invariant K. Alors l'extension est simple et séparable.

Ce sont trois conséquences immédiates du théorème de l'élément primitif.

  • Si l'extension est simple et non finie, alors l'extension est isomorphe au corps des fractions rationnels sur K.

En effet, soit g un générateur de L, il existe une unique manière de prolonger l'application de L dans K(X) le corps des fractions rationnelles qui à g associe X en un morphisme de corps. Il est aisé de vérifier que c'est un isomorphisme.

Supposons l'extension simple et finie, soit alors g un générateur de L et P[X] le polynôme minimal de g à coefficients dans K. Ce polynôme existe d'après le paragraphe Définitions et premières propriétés des extensions algébriques.

  • L est alors isomorphe au quotient de l'anneau des polynômes K[X] par l'idéal engendré par P[X], le polynôme minimal d'un générateur.

C'est une conséquence directe de la démonstration de la première proposition du paragraphe Extension algébrique et polynôme.

Page générée en 0.063 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise