L’électron comme le photon peuvent être décrits par des ondes. Le photon est une onde électromagnétique et l’électron, une fonction d'onde. L’analogie entre photons et électrons est plus forte encore dans le cas des polarisations lumineuses circulaires, en effet, ces deux états correspondent à des photons portant un moment cinétique +1 ou −1 le long de la direction de propagation. Tout comme les électrons ont un spin -1/2 ou +1/2 selon la direction particulière où l’on fait la mesure.
Ainsi si l’on désigne un état par la notation ‘+’ et l’autre par ‘-’, on peut réaliser une analogie formelle parfaite. Dans la nature, pour les électrons comme pour les photons, les sources ne sont que partiellement polarisées. Un filtre à spin comme un filtre optique doit transmettre les particules qui ont une certaine polarisation. On définit en optique, deux coefficients pour les filtres, le coefficient de transmission T et celui de sélectivité S. On définit pour le filtre T+ la transmission d’une particule dans l’état + et T− celle de la particule dans l’état -. Ainsi pour un faisceau de particules incidentes d’intensité I = I+ + I−, on définie T et S par T = (1/2).(T+ + T−) et S = (T+ − T−)(T+ + T−).
Un filtre en polarisation ‘parfait’ est caractérisé par T = 1/2 et S = 1 (ce qui correspond, par exemple, à T+ = 1 et T− = 0). Dans ce cas, pour un faisceau incident non-polarisé, le faisceau transmis est d’intensité égale à la moitié de l’intensité incidente et de polarisation 100 %. En optique on utilise un dispositif dit polariseur analyseur, le polariseur ne transmet que les photons qui ont la même polarisation que lui et l’analyseur permet de faire varier l’intensité lumineuse sortante selon qu’il est parallèle au polariseur ou au contraire perpendiculaire. Les dispositifs à couche mince magnétique fonctionnent sur le même principe.