Méthode GF - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Relations aux conditions d'Eckart

A partir de l'invariance des coordonnées internes St par rapport à toute rotation globale et translation de la molécule, on en déduit que les coordonnées linéarisées stA présentent les mêmes propriétés.On peut montrer que cela implique que les six conditions suivantes sont satisfaites par les coordonnées internes :

 \sum_{A=1}^N \mathbf{s}^t_{A}  = 0\quad\mathrm{et}\quad  \sum_{A=1}^N \mathbf{R}^0_A\times \mathbf{s}^t_A= 0,  \quad t=1,\ldots,3N-6.

Ces conditions découlent des conditions d'Eckart qui sont valables pour les vecteurs déplacement :

 \sum_{A=1}^N M_A\; \mathbf{d}_{A} = 0 \quad\mathrm{et}\quad \sum_{A=1}^N M_A\;  \mathbf{R}^0_{A} \times \mathbf{d}_{A} = 0.

Coordonnées normales en termes de coordonnées cartésiennes de déplacement

Les coordonnées normales sont parfois exprimées comme des combinaisons linéaires des coordonnées cartésiennes de déplacement. Soit RA le vecteur position du noyau A et RA0 la position à l'équilibre correspondante.  \mathbf{d}_A \equiv \mathbf{R}_A -\mathbf{R}_A^0 est par définition la coordonnée cartésienne de déplacement du noyau A. La linéarisation de Wilson des coordonnées curvilignes internes qt exprime la coordonnée St en termes de coordonnées de déplacement :

 S_t =\sum_{A=1}^N \sum_{i=1}^3 s^t_{Ai} \, d_{Ai}= \sum_{A=1}^N \mathbf{s}^t_{A} \cdot \mathbf{d}_{A}, \quad \mathrm{pour}\quad t = 1,\ldots,3N-6,

sAt est le vecteur s de Wilson. Si l'on introduit s^t_{Ai} dans la matrice 3N-6 x 3N B, cette équation devient en notation matricielle :

La forme réelle des éléments de matrice de B peut être relativement compliquée. Pour un angle de torsion en particulier, impliquant 4 atomes, on a besoin d'une algèbre vectorielle fastidieuse afin d'en déduire les valeurs correspondantes des s^t_{Ai} . On pourra, pour plus d'informations sur cette méthode connue sous le nom de méthode des vecteurs s de Wilson se reporter à l'ouvrage de Wilson et collaborateurs, ou à l'article vibration moléculaire. À ce stade,

 \mathbf{Q} = \mathbf{L}^{-1} \mathbf{s} = \mathbf{L}^{-1} \mathbf{B} \mathbf{d} \equiv \mathbf{D} \mathbf{d}.

Sous forme de somme :

 Q_k = \sum_{A=1}^N \sum_{i=1}^3 D^k_{Ai}\, d_{Ai} \quad \mathrm{pour}\quad k=1,\ldots, 3N-6.

D est ici une matrice 3N-6 x 3N donnée par la linéarisation des coordonnées internes q (procédé algébrique) et la solution des équations GF de Wilson (procédé numérique).

Page générée en 0.097 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise