Méthode GF - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La méthode GF de Wilson, parfois appelée méthode FG, est une méthode de mécanique classique d'obtention de certaines coordonnées internes pour une molécule semi-rigide vibrante, les coordonnées normales Qk. Les coordonnées normales décomposent les mouvements classiques de vibrations de la molécule et permettent ainsi d'obtenir des amplitudes vibrationnelles des atomes en fonction du temps. On postule, dans la méthode GF de Wilson, que l'énergie cinétique moléculaire est due seulement aux vibrations harmoniques des atomes, c'est-à-dire que l'énergie globale de rotation et translation est ignorée. Les coordonnées normales apparaissent aussi dans la description quantique des mouvements de vibration de la molécule et dans le couplage de Coriolis entre rotations et vibrations.

Il en découle qu'après application des conditions d'Eckart que la matrice G-1 donne l'énergie cinétique en termes de coordonnées internes linéaires arbitraires, alors que F représente l'énergie potentielle (harmonique) en fonction de ces coordonnées. La méthode GF donne la transformation linéaire des coordonnées internes générales à l'ensemble spécial de coordonnées normales.

La méthode GF

Une molécule non-linéaire de N atomes possède 3N-6 degrés de liberté internes, car localiser une molécule dans un espace tridimensionnel nécessite trois degrés de liberté et son orientation spatiale nécessite trois autres degrés de liberté. Ces degrés de liberté doivent être soustraits des 3N degrés de liberté d'un système de N particules.

Les atomes d'une molécule sont « liés » par une surface d'énergie potentielle (SEP) (ou un champ de force dans une approche classique) qui est une fonction de 3N-6 coordonnées.

Les degrés internes de liberté q1, ..., q3N-6 décrivant la SEP de façon optimale sont parfois non-linéaires, comme les coordonnées de valence telles que les angles de liaison, de torsion ou les étirements de liaisons. Il est possible d'écrire l'opérateur d'énergie cinétique quantique pour de telles coordonnées curvilignes, mais il est difficile de formuler une théorie générale applicable à toute molécule. C'est pourquoi E.B. Wilson linéarisa les coordonnées internes en postulant des déplacements minimes. La version linéarisée de la coordonnée interne qt est notée St.

La SEP V peut être développée en série de Taylor au voisinage de son minimum en termes de St. Le troisième terme (le hessien de V), évalué au minimum, est une matrice 'F dérivée de la force. Dans l'approximation harmonique, la série de Taylor s'achève avec ce terme. Le deuxième terme, contenant les dérivées premières, est nul car évalué au minimum de V. Le premier terme peut être inclus dans le zéro d'énergie. D'où :

 2V \approx \sum_{s,t=1}^{3N-6} F_{st} S_s\, S_t .

L'énergie cinétique de vibration classique a la forme :

 2T = \sum_{s,t=1}^{3N-6} g_{st}(\mathbf{q})  \dot{S}_s\dot{S}_t ,

gst est un élément du tenseur métrique des coordonnées internes (curvilignes). Les points indiquent les dérivées temporelles. L'évaluation du tenseur métrique g au minimum q0 de V donne la matrice définie positivement et symétrique G = g(q0)-1. On peut alors résoudre les deux problèmes matriciels suivants simultanément :

 \mathbf{L}^\mathrm{T} \mathbf{F} \mathbf{L} =\boldsymbol{\Phi} \quad \mathrm{et}\quad \mathbf{L}^\mathrm{T} \mathbf{G}^{-1} \mathbf{L} = \mathbf{E},

car ils sont équivalents au problème aux valeurs propres généralisé :

 \mathbf{G} \mathbf{F} \mathbf{L} = \mathbf{L} \boldsymbol{\Phi},

\boldsymbol{\Phi}=\operatorname{diag}(f_1,\ldots, f_{3N-6}) et \mathbf{E}\, est la matrice unitaire. La matrice L-1 contient les coordonnées normales Qk dans ses lignes :

 Q_k = \sum_{t=1}^{3N-6} (\mathbf{L}^{-1})_{kt} S_t , \quad k=1,\ldots, 3N-6. \,

En raison de la forme du problème aux valeurs propres généralisé, la méthode est appelée méthode GF, appellation à laquelle on accole parfois le nom de son inventeur : la méthode GF de Wilson.

On introduit les vecteurs

\mathbf{s} = \operatorname{col}(S_1,\ldots, S_{3N-6}) \quad\mathrm{et}\quad \mathbf{Q} = \operatorname{col}(Q_1,\ldots, Q_{3N-6}),

satisfaisant la relation :

 \mathbf{s} = \mathbf{L} \mathbf{Q}.

En introduisant les résultats de l'équation aux valeurs propres, l'énergie de la molécule E = T + V (dans l'approximation harmonique) devient :

   2E = \dot{\mathbf{s}}^\mathrm{T} \mathbf{G}^{-1}\dot{\mathbf{s}}+ \mathbf{s}^\mathrm{T}\mathbf{F}\mathbf{s}
 = \dot{\mathbf{Q}}^\mathrm{T}  \; \left( \mathbf{L}^\mathrm{T} \mathbf{G}^{-1} \mathbf{L}\right) \;  \dot{\mathbf{Q}}+ \mathbf{Q}^\mathrm{T} \left(  \mathbf{L}^\mathrm{T}\mathbf{F}\mathbf{L}\right)\;  \mathbf{Q}
 = \dot{\mathbf{Q}}^\mathrm{T}\dot{\mathbf{Q}} + \mathbf{Q}^\mathrm{T}\boldsymbol{\Phi}\mathbf{Q}  = \sum_{t=1}^{3N-6} \big( \dot{Q}_t^2 +  f_t Q_t^2 \big).

Le lagrangien L = T - V est :

  L = \frac{1}{2} \sum_{t=1}^{3N-6} \big( \dot{Q}_t^2 - f_t Q_t^2 \big).

Les équations de Lagrange sont identiques aux équations de Newton :

 \ddot{Q}_t + f_t \,Q_t = 0

pour un ensemble d'oscillateurs harmoniques non couplés. Ces équations différentielles ordinaires du second ordre sont facilement solvables, et donnent Qt en fonction du temps (voir l'article sur l'oscillateur harmonique).

Page générée en 0.323 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise