L'exemple historique qui a amené à étudier les premières études sur ce qui est devenu plus tard la définition des modules semi-simples correspond à des modules correspondant à des idéaux de l'espace des endomorphismes. Supposons le corps K commutatif et algébriquement clos, et V un espace vectoriel de dimension finie sur K. Si L(V) désigne l'espace vectoriel des endomorphismes, alors une sous-algèbre M de L(V) est un module sur l'anneau M. Il existe un résultat important concernant ce type de module :
Ce résultat est l'application directe de la réduction de Jordan, si le polynôme minimal de φ n'a pas de racine multiple, alors l'algèbre engendrée par φ est composée d'une somme directe des homothéties dans chaque sous-espace propre. Si m désigne le nombre de sous-espace propre, le module est isomorphe à Km. Dans le cas contraire, il existe une composante nilpotente qui rend un sous-espace caractéristique non semi-simple.
Un exemple qui a largement fait évoluer la théorie est celui des G-modules ou G désigne un groupe. L'anneau associée correspond à la structure d'algèbre sur un corps K commutatif des combinaisons linéaires formelles des éléments de G :
Soit (V, ρ) une représentation, la fonction ρ se prolonge sur K[G] de la manière suivante :
Le théorème de Maschke montre que sous G-module est un facteur direct, en conséquence un un G-module est un module semi-simple.