Module semi-simple - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Exemples

Espace vectoriel des endomorphismes

L'exemple historique qui a amené à étudier les premières études sur ce qui est devenu plus tard la définition des modules semi-simples correspond à des modules correspondant à des idéaux de l'espace des endomorphismes. Supposons le corps K commutatif et algébriquement clos, et V un espace vectoriel de dimension finie sur K. Si L(V) désigne l'espace vectoriel des endomorphismes, alors une sous-algèbre M de L(V) est un module sur l'anneau M. Il existe un résultat important concernant ce type de module :

  • Soit φ un endomorphisme de L(V), la sous-algèbre engendrée par φ est un module sur lui-même. Il est semi-simple si et seulement si le polynôme minimal de φ n'admet pas de racine multiple.

Ce résultat est l'application directe de la réduction de Jordan, si le polynôme minimal de φ n'a pas de racine multiple, alors l'algèbre engendrée par φ est composée d'une somme directe des homothéties dans chaque sous-espace propre. Si m désigne le nombre de sous-espace propre, le module est isomorphe à Km. Dans le cas contraire, il existe une composante nilpotente qui rend un sous-espace caractéristique non semi-simple.

Structure de G-module

Un exemple qui a largement fait évoluer la théorie est celui des G-modules ou G désigne un groupe. L'anneau associée correspond à la structure d'algèbre sur un corps K commutatif des combinaisons linéaires formelles des éléments de G :

  • La K-algèbre du groupe G, noté K[G] est l'espace vectoriel des combinaisons linéaires formelles des éléments de G et muni de la multiplication suivante :
\forall (a_s)_{s\in G}\in \mathbb K^G \; \forall (b_t)_{t\in G}\in \mathbb \mathbb K^G \quad \Big(\sum_{s\in G} a_s.s\Big)\Big(\sum_{t\in G} b_t.t\Big)= \sum_{s\in G}\sum_{t\in G} a_sb_t.st

Soit (V, ρ) une représentation, la fonction ρ se prolonge sur K[G] de la manière suivante :

\forall k \in \mathbb K[G] \quad \exists (a_s)_{s \in G} \in \mathbb K^G \quad avec \quad k = \sum_{s \in G} a_s.s \quad alors \quad \rho (k)= \sum_{s \in G} a_s.\rho(s)

Le théorème de Maschke montre que sous G-module est un facteur direct, en conséquence un un G-module est un module semi-simple.

Page générée en 0.095 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise