Sédénion - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Bibliographie

  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions, Applied Mathematics and Computation 28:47-72 (1988)
  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions - Further results, Applied Mathematics and Computation, 84:27-47 (1997)
  • Imaeda, K., Imaeda, M.: Sedenions: algebra and analysis, Applied Mathematics and Computation, 115:77-88 (2000)
  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions - Part III, Online at http://www.kevincarmody.com/math/sedenions3.pdf (2006)

Les sédénions coniques / algèbre M à 16-dim.

Arithmétique

À la différence des sédénions issus de la construction de Cayley-Dickson, qui sont construits sur l'unité (1) et 15 racines de l'unité négative (-1), les sédénions coniques sont construits sur 8 racines carrées de l'unité positive et négative. Ils partagent la non-commutativité et la non-associativité avec l'arithmétique des sédénions de Cayley-Dickson ("sédénions circulaires"), néanmoins les sédénions coniques sont modulaires, alternatifs, flexibles mais ne sont pas associatifs de puissances.

Les sédénions coniques contiennent à la fois les sous-algèbres des octonions circulaires, les octonion coniques et les octonions hyperboliques. Les octonions hyperboliques sont de manière calculatoire équivalents aux octonions fendus.

Les sédénions coniques contiennent des éléments idempotents, nilpotents et donc, des diviseurs de zéro. Avec l'exception de leurs éléments nilpotents et zéro, l'arithmétique est close avec le respect des opérations de puissance et de logarithme.

Page générée en 0.088 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise