La spectroscopie de fluorescence, ou encore fluorométrie ou spectrofluorométrie, est un type de spectroscopie électromagnétique qui analyse la fluorescence d'un échantillon. Elle implique l'utilisation d'un rayon de lumière (habituellement dans l'ultraviolet) qui va exciter les électrons des molécules de certains composés et les fait émettre de la lumière de plus basse énergie, typiquement de la lumière visible, mais pas nécessairement. Une technique supplémentaire est la spectroscopie d'absorption.
Les outils qui servent à la mesure de la fluorescence sont appelés fluoromètres ou fluorimètres.
Les molécules existent dans de nombreux états appelés niveaux d'énergie. La spectroscopie de fluorescence est concernée au premier chef par ces états électroniques et vibrationnels. En général, les espèces étudiées ont un état fondamental (état de plus basse énergie) présentant un intérêt, et un état excité de plus haute énergie. Chacun de ces états électroniques possède des états de vibration variés.
Les photons de lumière sont des petits « paquets » d'énergie, chacun possédant une énergie proportionnelle à sa fréquence ; les photons de hautes fréquences possèdent ainsi des énergies plus élevées que ceux de basses fréquences. Ceux-ci peuvent être absorbés par les molécules, celles-ci acroissant leur énergie de celles des photons, ou émis par les molécules, les photons transportant l'énergie de la molécule à l'extérieur.
En spectroscopie de fluorescence, les espèces sont tout d'abord excitées de leur état fondamental vers un des nombreux niveaux vibrationnels des niveaux électroniques, par absorption d'un photon. Les collisions avec les autres molécules induisent une perte d'énergie vibrationnelle pour la molécule excitée, jusqu'à atteindre le niveau vibrationnel le plus bas de l'état électronique excité.
La molécule se relaxe ensuite dans un des états vibrationnels de l'état fondamental en émettant un photon dans le processus. Lors de ce processus, les photons acquièrent différentes énergies, et par conséquent différentes fréquences. Par analyse de ces fréquences en spectroscopie de fluorescence, la structure des différents niveaux de vibration peut être déterminée.
De manière typique, les différentes fréquences de lumière fluorescente émise par l'échantillon sont mesurées avec une lumière excitée gardée à longueur d'onde constante. Cela est appelé « spectre d'émission ». Un spectre d'émission est mesuré par l'enregistrement de la somme de la lumière de fluorescence émise à toutes les fréquences comme fonction de la fréquence d'une lumière incidente monochromatique.
À faibles concentrations, l'intensité de la fluorescence est généralement proportionnelle à la concentration du fluorophore.
Contrairement à la spectroscopie UV/visible, des « standard », spectres indépendants du matériel utilisé, ne sont pas facilement obtenus. De nombreux facteurs influencent et distordent les spectres ou encore nécessitent d'être pris en compte et corrigés afin d'obtenir de « vrais » spectres. Les différents types de distorsions seront classés ici soit comme liées à l'instrumentation, soit liées aux échantillons. La distorsion due à l'instrumentation sera discutée en premier lieu. Il faut savoir pour commencer que les caractéristiques de l'intensité et la longueur d'onde varient dans le temps à chaque expérience et entre chaque expérience. De plus, aucune lampe ne possède d'intensité constante pour toutes les fréquences. Afin de corriger cela, un séparateur de faisceau peut être utilisé après le monochromateur ou le filtre d'excitation afin de diriger une partie de la lumière sur le détecteur de référence.
De plus, l'efficacité en transmission des monochromateurs et de filtres doit être en compte. Elle peut aussi changer au cours du temps. L'efficacité en transmission du monochromateur varie aussi selon la longueur d'onde. C'est la raison pour laquelle un détecteur de référence optionnel devait être placé après le monochromateur ou le filtre d'excitation. Le pourcentage de fluorescance capté par le détecteur est aussi dépendante du système. De plus, l'efficacité quantique du détecteur, qui est le pourcentage de photons détectés, varie selon les détecteurs, selon la longueur d'onde et le temps, puisque le détecteur vieillit.
La correction de ces facteurs d'instrumentation pour obtenir un spectre « standard » est un procédé discutable, qui est seulement appliqué lorsqu'il est strictement nécessaire. C'est ainsi le cas lors de la mesure du rendement quantique ou lors de la recherche de la longueur d'onde pour la plus forte intensité d'émission, par exemple.
Comme indiqué au-dessus, des distorsions se produisent à partir de l'échantillon. Ainsi certaines caractéristiques de l'échantillon doivent aussi être prises en compte. Premièrement, la photodécomposition peut faire décroître l'intensité de la fluorescence dans le temps. La diffusion de la lumière doit aussi être prise en compte. Les types de diffusion les plus significatifs dans ce contexte sont la diffusion Rayleigh et la diffusion Raman. La diffusion de la lumière par diffusion Rayleigh se fait à même longueur d'onde que la lumière incidente, alors que la diffusion Raman modifie la longueur d'onde de la lumière diffusée, habituellement vers des longueurs d'ondes plus importantes. La diffusion Raman est le résultat d'un état électronique virtuel induit par la lumière d'excitation. À partir de cet état virtuel, les molécules peuvent relaxer vers un niveau vibrationnel autre que celui de l'état vibrationnel fondamental. Dans les spectres de fluorescence, on peut toujours observer une différence constante de nombre d'onde par rapport au nombre d'onde d'excitation, comme par exemple un pic qui apparaît à un nombre d'onde de 3 600 cm−1 plus bas que pour la lumière d'excitation dans l'eau.
D'autres aspects à considérer sont les effets internes du filtre, incluant la réabsorption. La réabsorption se produit lorsqu'une autre molécule ou une partie de macromolécule absorbe pour des longueurs d'ondes auxquelles le fluorophore émet. Si c'est le cas, une partie des photons émis par le fluorophore peut être absorbée à nouveau. Un autre effet interne se produit en raison de hautes concentrations de molécules absorbantes, incluant le fluorophore. Il en résulte que l'intensité de la lumière d'excitation n'est pas constante au travers de la solution. Ainsi, seul un faible pourcentage de la lumière d'excitation atteint les fluorophores visibles pour le système de détection. Les effets internes au filtre modifie le spectre et l'intensité de la lumière émise et doivent ainsi être considérés lors de l'analyse du spectre d'émission de la lumière fluorescente.