Deux types généraux d'instruments existent :
Les deux types fonctionnent sur le principe suivant : la lumière d'une source d'excitation passe par un filtre ou un monochromateur, puis par l'échantillon. Ici, une partie peut être absorbée, induisant la fluorescence de certaines molécules de l'échantillon. Une partie de la lumière de fluorescence est ensuite concentrée sur un filtre ou un monochromateur, qui est parfois placé à un angle de 90 ° par rapport à la lumière d'excitation. La lumière est ensuite captée par un détecteur.
Des sources lumineuses diverses peuvent être utilisées comme sources d'excitation, comme les lasers, les photodiodes et des lampes comme les arcs au xénon et lampes à vapeur de mercure en particulier. Un laser émet une lumière de forte intensité dans un intervalle étroit de longueurs d'onde, typiquement en dessous de 0,01 nm, qui rend un monochromateur ou un filtre d'excitation inutile. Le défaut de cette méthode est que la longueur d'onde du laser ne peut varier beaucoup. Une lampe à vapeur de mercure est linéaire, ce qui signifie qu'elle émet une lumière près des pics de longueurs d'ondes, contrairement à l'arc Xe qui a un spectre d'émission continu avec une intensité quasi-constante entre 300 et 800 nm et qui a une irradiation suffisante pour effectuer des mesures jusqu'à environ 200 nm.
Des filtres et/ou des monochromateurs peuvent utilisés dans les fluorimètres. Il y a de manière basique deux types de filtres : les filtres passe-bande et les filtres à interférence. Les filtres passe-bande sont des filtres qui transmettent la lumière soit en dessous d'une longueur d'onde donnée (filtres passe-bas), soit au-dessus d'une longueur d'onde donnée (filtres passe-haut). Les filtres à interférence sont des filtres transmettant la lumière dans un intervalle donnée. Un monochromateur transmets la lumière à une longueur d'onde ajustable avec une tolérance également ajustable. Le type de monochromateur le plus commun utilise une grille de diffraction, c'est-à-dire qu'une lumière collimatée « rentre » dans la grille et en ressort avec un angle différent qui dépend de la longueur d'onde. Le monochromateur peut ainsi sélectionner quelles longueurs d'ondes sont transmises. Afin de permettre des mesures d'anisotropie, l'ajout de deux filtres de polarisation est nécessaire : un après le filtre ou le monochromateur d'excitation, et un avant le monochromateur ou le filtre d'émission.
Comme mentionné ci-dessus, la fluorescence est très souvent mesurée à un angle de 90 ° par rapport à l'incidence de la lumière d'excitation. Cette géométrie est utilisée au lieu de placer le détecteur sur la ligne de la lumière d'excitation à un angle de 180 ° afin d'éviter les interférences pour la lumière d'excitation transmise. Aucun monochromateur n'est parfait, et il va transmettre de la lumière parasite, qui est de la lumière avec d'autres longueurs d'ondes que celle de la lumière transmise. Un monochromateur idéal ne transmettrait seulement que la lumière dans un intervalle donné et ceci avec une transmission fortement indépendante de la longueur d'onde. Lorsque l'on effectue la mesure à un angle de 90 °, seule la lumière diffusée par l'échantillon induit de la lumière parasite. Cela entraîne un meilleur rapport signal/bruit, et diminue la limite de détection par un facteur approximatif de 10 000, par rapport à une géométrie à 180 °. De plus, la fluorescence peut aussi être mesurée de face, ce qui se fait parfois pour des échantillons troubles.
Le détecteur peut soit être mono-canal, soit multi-canaux. Un détecteur mono-canal peut seulement détecter l'intensité d'une seule longueur d'onde à la fois, alors que le multi-canaux détecte l'intensité pour plusieurs longueurs d'ondes simultanées, rendant le monochromateur ou le filtre d'émission inutile. Les différents types de détecteurs possèdent tous deux à la fois des avantages et des inconvénients.
Les fluorimètres les plus « souples » avec des monochromateurs couplés et une source de lumière d'excitation continue peuvent enregistrer à la fois un spectre d'excitation et un spectre de fluorescence. Lors de l'acquisition du spectre de fluorescence, la longueur d'onde de la lumière d'excitation est maintenue constante, préférentiellement à une longueur d'onde de forte absorption, et le monochromateur d'excitation balaie le spectre. Pour la mesure du spectre d'excitation, la longueur d'onde passant le filtre d'émission ou le monochromateur est maintenue constante et le monochromateur d'excitation balaie le spectre. Le spectre d'excitation est généralement identique au spectre d'absorption et l'intensité de fluorescence est proportionnelle à l'absorption.