Kullback-Leibler distances between the whole posterior distributions of the slope and variance do not indicate non-normality. However, the ratio of expectations of these posteriors and the expectation of the ratios give similar results to the Shapiro-Wilk statistic except for very small samples, when non-informative priors are used.
Spiegelhalter suggests using Bayes factors to compare normality with a different class of distributional alternatives. This approach has been extended by Farrell and Rogers-Stewart.
Il existe également un grand nombre de tests de normalité:
Les tests de normalité sont des tests d'hypothèse. En notant F(x) la fonction de répartition basée sur les données à analyser et F0(x) la fonction de répartition théorique, les hypothèses nulle et alternative peuvent s'écrire :
Les tests sur les moments ont une hypothèse moins forte, ils ne testent pas si la fonction de répartition est normale, mais si les moments (coefficients d'asymétrie et d'aplatissement) de la distribution inconnue sont identiques à ceux d'une loi normale:
On remarquera que ce n'est pas suffisant pour caractériser une loi normale (Problème des moments).
Son utilisation n'est pas recommandée du fait de son manque de puissance et de la nécessité de diviser les distributions en classes.
.
Une application des tests de normalité concerne les résidus d’un modèle de régression linéaire. S’il ne sont pas distribués de façon normale, les résidus ne peuvent pas être utilisés dans des tests Z ou dans quelqu’autre test que ce soit, à partir du moment où il fait intervenir des hypothèses de normalité (par exemple, le test t, le test de Fisher ou le test du χ²). Si les résidus ne sont pas normalement distribués, cela signifie que la variable dépendante, ou tout au moins une variable explicative, pourrait avoir une fonction de répartition erronée ; des variables importantes peuvent également être manquantes. Une ou plusieurs correction de ces erreurs classiques peuvent engendrer des résidus qui suivent une distribution normale.