Loi normale - Définition et Explications

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Distribution gaussienne

Densité

Fonction de masse pour les distributions correspondantes

Paramètres μ moyenne (La moyenne est une mesure statistique caractérisant les éléments d'un ensemble de quantités : elle exprime la grandeur qu'auraient...) (nombre réel)
σ2 > 0 variance ( En statistique et en probabilité, variance En thermodynamique, variance ) (nombre réel)
Support x \in\, ]-\infty;+\infty[\!
Densité de probabilité (En théorie des probabilités ou en statistiques, une densité de probabilité est une fonction qui permet de représenter une loi de probabilité sous forme d'intégrales.) (fonction de masse) \frac1{\sigma\sqrt{2\pi}}\; \exp\left(-\frac{\left(x-\mu\right)^2}{2\sigma^2} \right) \!
Fonction de répartition (En théorie des probabilités ou en statistiques, la fonction de répartition d'une variable aléatoire réelle caractérise la loi de probabilité de...) \frac12 \left(1 + \mathrm{erf}\,\frac{x-\mu}{\sigma\sqrt2}\right) \!
Espérance μ
Médiane (Le terme de médiane, du latin medius, qui est au milieu, possède plusieurs acceptations en mathématiques :) (centre) μ
Mode μ
Variance σ2
Asymétrie (L'asymétrie est l’absence de symétrie, ou son inverse. Dans la nature, les crabes violonistes en sont des exemples spectaculaires.) (statistique) 0
Kurtosis
(non-normalisé)
3 (0 si normalisé)
Entropie (En thermodynamique, l'entropie est une fonction d'état introduite en 1865 par Rudolf Clausius dans le cadre du deuxième principe, d'après les travaux de Sadi...) \ln\left(\sigma\sqrt{2\,\pi\,e}\right)\!
Fonction génératrice (En mathématiques, la fonction génératrice de la suite (an) est la série formelle définie par) des moments M_X(t)= \exp\left(\mu\,t+\sigma^2 \frac{t^2}{2}\right)
Fonction caractéristique (On rencontre des fonctions caractéristiques dans plusieurs domaines :) \phi_X(t)=\exp\left(\mu\,i\,t-\frac{\sigma^2 t^2}{2}\right)

En probabilité (La probabilité (du latin probabilitas) est une évaluation du caractère probable d'un évènement. En mathématiques, l'étude des probabilités est un sujet de grande importance donnant lieu à de...), on dit qu'une variable aléatoire réelle (Une variable aléatoire réelle est une variable aléatoire à valeurs dans , ou une partie de  ; c'est une fonction définie depuis l'ensemble des résultats possibles d'une...) X suit une loi normale (ou loi normale gaussienne, loi de Laplace-Gauss) d'espérance μ et d'écart type (En mathématiques, l'écart type est une quantité réelle positive, éventuellement infinie, utilisée dans le domaine des probabilités pour caractériser la répartition d'une variable aléatoire autour de sa...) σ strictement positif (donc de variance σ2) si cette variable aléatoire (Une variable aléatoire est une fonction définie sur l'ensemble des résultats possibles d'une expérience aléatoire, telle qu'il soit possible de...) réelle X admet pour densité (La densité ou densité relative d'un corps est le rapport de sa masse volumique à la masse volumique d'un corps pris comme référence. Le corps de référence est l'eau pure à 4 °C pour les liquides et...) de probabilité la fonction p(x) définie, pour tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) nombre réel (En mathématiques, un nombre réel est un objet construit à partir des nombres rationnels, qui modélise la notion de longueur et d'autres grandeurs physiques.) x, par :

p(x)\ =\ \tfrac{1}{\sigma \sqrt{2\pi}}\ \mathrm{e}^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}

Une telle variable (En mathématiques et en logique, une variable est représentée par un symbole. Elle est utilisée pour marquer un rôle dans une formule, un prédicat ou un algorithme. ...) aléatoire est alors dite variable gaussienne.

On note habituellement cela de la manière suivante :

X \sim \mathcal{N}(\mu,\, \sigma^2)

La loi normale est une des principales distributions de probabilité. Elle a été introduite par le mathématicien (Un mathématicien est au sens restreint un chercheur en mathématiques, par extension toute personne faisant des mathématiques la base de son...) Abraham de Moivre en 1733 et utilisée par lui afin d'approcher des probabilités associées à des variables aléatoires binomiales possédant un paramètre (Un paramètre est au sens large un élément d'information à prendre en compte pour prendre une décision ou pour effectuer un calcul.) n très grand. Cette loi a été mise en évidence par Gauss au XIXe siècle et permet de modéliser de nombreuses études biométriques. Sa densité de probabilité dessine une courbe (En géométrie, le mot courbe, ou ligne courbe désigne certains sous-ensembles du plan, de l'espace usuels. Par exemple, les droites, les segments, les lignes polygonales et les cercles sont des courbes.) dite courbe en cloche ou courbe de Gauss.

La loi normale centrée réduite

Définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.)

Représentation graphique d'une loi normale centrée réduite (dite courbe de Gauss ou courbe en cloche).

On appelle loi normale (ou gaussienne) centrée réduite la loi définie par la densité de probabilité \varphi : \R \to \R^+ définie par :

\varphi(t)=\frac{1}{\sqrt{2\;\pi}}\, \mathrm{e}^{-\frac{t^2}{2}}

On vérifie qu'elle est continue et que son intégrale (Une intégrale est le résultat de l'opération mathématique, effectuée sur une fonction, appelé intégration. Une intégrale est donc composée d'un...) sur \ \R est égale à 1.

On sait en effet que \ \int_{-\infty}^{+\infty}\mathrm{e}^{-\frac{t^2}{2}}\ dt = \sqrt{2\, \pi} (intégrale de Gauss).

On démontre (voir plus bas) que la loi définie par cette densité de probabilité admet une espérance nulle et une variance égale à 1.

Remarques :

  • la densité \ \varphi est paire ;
  • elle est indéfiniment dérivable et vérifie, pour tout \ t \in \R, l'identité \varphi'(t) = - t\, \varphi(t).

La représentation graphique de cette densité est une courbe en cloche (ou courbe de Gauss).

Moments

Les moments de cette loi existent tous. Pour tout \ n \in \mathbb{N}, le moment d'ordre n par rapport à l'origine est :

\ m_n = \int_{-\infty}^{+\infty} t^n\,  \varphi(t)\, dt.

Pour la suite on supposera μ = 0 et σ2 = 1.

  • En raison de la parité de l'intégrande (Une intégrale est le résultat de l'opération mathématique, effectuée sur une fonction, appelé intégration. Une intégrale est donc composée d'un intégrande (la...), tous les moments d'ordre impair sont nuls :
m_{2\, k+1} = 0
  • Supposons à présent n pair : \ n = 2\, k, où \ k \in \mathbb{N}.
Si \ k \geq 1, une intégration par parties (non détaillée ici) donne :
m_{2\, k} = \int_{-\infty}^{+\infty} t^{2\, k - 1}\,  t\, \varphi(t)\, dt =-\int_{-\infty}^{+\infty} t^{2\, k - 1}\,  \varphi'(t)\, dt = (2\, k - 1) \int_{-\infty}^{+\infty} t^{2\, k - 2}\, \varphi(t)\, dt
ce qui fournit la relation de récurrence :
m_{2\, k} = (2\, k - 1)\, m_{2\, k - 2} .
De cette relation, on déduit, comme \ m_0 = 1\,, que :
m_{2\, k} = 1 \cdot 3 \cdots  (2\, k - 1) = \frac{(2\, k)\, !}{2^k\, k\,!}
  • En particulier, \ m_1 = 0 (l'espérance est nulle : la loi est donc dite centrée) et \ m_2 = 1\, (la variance vaut \ \ m_2 - m_1^2 = 1\,\! : la loi est donc dite réduite).
Ceci justifie l'appellation de loi normale centrée réduite.
  • Des formules précédentes, on déduit encore :
m_3 = 0\,  et  m_4 = 3\,
  • La loi étant réduite, les moments centrés sont tous égaux aux moments par rapport à l'origine de même rang ; en particulier :
\mu_2 = \sigma^2 = 1\,,  \mu_3 = 0\, et \mu_4 = 3 \sigma^4 \,.
On en déduit l'asymétrie (skewness) : \gamma_1 = \frac{\mu_3}{\sigma^3} = 0\, et l'aplatissement (L'aplatissement d'une planète est une mesure de son « ellipticité »; une sphère a un aplatissement de 0, alors qu'un disque infiniment mince a un aplatissement de 1.) (kurtosis) : \beta_2 = \frac{\mu_4}{\sigma^4} = 3\,.

Fonction de répartition

On note Φ la fonction de répartition de la loi normale centrée réduite. Elle est définie, pour tout réel x, par :

\ \Phi(x) = \int_{-\infty}^x \varphi(t)\, dt = \int_{-\infty}^x\frac{1}{\sqrt{2\,\pi}}\,\mathrm{e}^{-\frac{t^2}{2}}\, dt.

Φ est la primitive de \varphi qui tend vers 0 en -\infty ; cette primitive ne s'exprime pas à l'aide des fonctions usuelles (Les fonctions usuelles sont à la fois les plus simples et les plus importantes des fonctions utilisées en mathématiques. La plupart sont généralement plus ou moins connues dans le...) (exponentielle, etc.) mais devient elle-même une fonction usuelle, importante, pour quiconque pratique le calcul des probabilités ou les statistiques (La statistique est à la fois une science formelle, une méthode et une technique. Elle comprend la collecte, l'analyse, l'interprétation de données ainsi que la présentation de ces ressources afin de les rendre...). La fonction Φ s'exprime à l'aide de la fonction d'erreur, elle même notée erf :

\Phi(z)\ =\ \frac12\left(1+\operatorname{erf}\left(\tfrac{z}{\sqrt{2}}\right)\right),

ou bien encore

\operatorname{erf}(z)\ =\ 2\Phi\left(z\sqrt{2}\right)-1.


Citons les propriétés suivantes de la fonction Φ :

  • Elle est indéfiniment dérivable, et \Phi' = \varphi
  • Elle est strictement croissante, tend vers 0 en -\infty et vers 1 en +\infty
(c'est donc une bijection (Une fonction f: X → Y est dite bijective ou est une bijection si pour tout y dans l’ensemble d'arrivée Y il existe un et un seul x dans l’ensemble de définition X tel que f(x) = y. On...) \R \to\, ]0,\, 1[\, : pour tout p \in\, ]0,\, 1[\,, il existe  x \in \R unique, noté \ \Phi^{-1}(p), tel que \ \Phi(x) = p)
  • Pour tout  x \in \R, \Phi(-x) = 1 - \Phi(x) (ceci résulte de ce que la densité est paire) ; en particulier, \ \Phi(0) = 0,5

Remarque : les notations \varphi et \ \Phi pour désigner « la » densité et la fonction de répartition de la loi normale centrée réduite sont usuelles.

Approximation (Une approximation est une représentation grossière c'est-à-dire manquant de précision et d'exactitude, de quelque chose, mais encore assez significative pour être utile. Bien qu'une...) de la fonction de répartition

Il n'existe pas d'expression pour Φ mais on peut exploiter avec profit son aspect régulier pour en donner une approximation grâce à un développement en série de Taylor. Par exemple, voici une approximation (à l'ordre 5) autour (Autour est le nom que la nomenclature aviaire en langue française (mise à jour) donne à 31 espèces d'oiseaux qui, soit appartiennent au genre Accipiter, soit constituent les 5 genres Erythrotriorchis, Kaupifalco,...) de 0:

\Phi(x) \approx \frac{1}{2} +  \frac{1}{\sqrt{2 \pi}} \left(x-\frac{x^3}{6}+\frac{x^5}{40}\right).

Cette approximation est performante pour | x | < 2.

Une approximation pour les grandes valeurs de x est donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un...), pour x positif, par la formule

1-\Phi(x) = \frac{e^{-x^2}}{\sqrt{2\pi}}. \left ( \frac{1}{x}  +\sum_{k=1}^{+\infty} \frac{(2k-1)!!\,(-1)^k}{x^{2k+1}}\right),

série divergente pour tout x positif, mais dont les sommes partielles encadrent 1-Φ(x) de manière efficace lorsque x est grand. Par exemple,

\frac{e^{-x^2}}{\sqrt{2\pi}}\left ( \frac{1}{x}  - \frac{1}{x^{3}}\right)\ \le\ 1-\Phi(x)\ \le\ \frac{e^{-x^2}}{x\sqrt{2\pi}},

d'où une erreur relative inférieure à 25% pour x supérieur à 2 ou bien inférieure à 11% pour x supérieur à 3. Ou bien encore :

d'où une erreur relative inférieure à 25% pour x supérieur à 2 ou bien inférieure à 2% pour x supérieur à 3.

Tables numériques

Il existe des tables de la fonction de répartition, donnant des valeurs approchées de \ \Phi(x) ; on se limite à des x positifs ou nuls : en effet, si par exemple on connaît l'approximation \Phi(0,5) \simeq 0,6915, on en déduit \Phi(-0,5) \simeq 1 - 0,6915 = 0,3085.

Au lieu des précédentes, on utilise souvent des tables de la fonction qu'on notera ici \ \Phi, définie sur \ \R^+ par :

\Phi(x) =\int_{-\infty}^x \varphi(t)\, dt

La table suivante donne pour tout x de 0 jusqu'à 3,9 par pas de 0,01, la valeur de 105 Φ(x). Ces valeurs sont arrondies à l'unité la plus proche.

L'entrée en ligne donne les deux premiers chiffres de x, c'est-à-dire le chiffre (Un chiffre est un symbole utilisé pour représenter les nombres.) des unités et celui des dixièmes, et l'entrée en colonne le chiffre des centièmes.

Par exemple : Pour Φ(1,73) = 0,95818, on choisira 1,7 en ligne et 0,03 en colonne (1,7 + 0,03 = 1.73) et l'intersection nous donnera le résultat.

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
0,0 50000 50399 50798 51197 51595 51994 52392 52790 53188 53586
0,1 53983 54380 54776 55172 55567 55962 56356 56749 57142 57535
0,2 57926 58317 58706 59095 59483 59871 60257 60642 61026 61409
0,3 61791 62172 62552 62930 63307 63683 64058 64431 64803 65173
0,4 65542 65910 66276 66640 67003 67364 67724 68082 68439 68793
0,5 69146 69497 69847 70194 70540 70884 71226 71566 71904 72240
0,6 72575 72907 73237 73565 73891 74215 74537 74857 75175 75490
0,7 75804 76115 76424 76730 77035 77337 77637 77935 78230 78524
0,8 78814 79103 79389 79673 79955 80234 80511 80785 81057 81327
0,9 81594 81859 82121 82381 82639 82894 83147 83398 83646 83891
1,0 84134 84375 84614 84849 85083 85314 85543 85769 85993 86214
1,1 86433 86650 86864 87076 87286 87493 87698 87900 88100 88298
1,2 88493 88686 88877 89065 89251 89435 89617 89796 89973 90147
1,3 90320 90490 90658 90824 90988 91149 91309 91466 91621 91774
1,4 91924 92073 92220 92364 92507 92647 92785 92922 93056 93189
1,5 93319 93448 93574 93699 93822 93943 94062 94179 94295 94408
1,6 94520 94630 94738 94845 94950 95053 95154 95254 95352 95449
1,7 95543 95637 95728 95818 95907 95994 96080 96164 96246 96327
1,8 96407 96485 96562 96638 96712 96784 96856 96926 96995 97062
1,9 97128 97193 97257 97320 97381 97441 97500 97558 97615 97670
2,0 97725 97778 97831 97882 97932 97982 98030 98077 98124 98169
2,1 98214 98257 98300 98341 98382 98422 98461 98500 98537 98574
2,2 98610 98645 98679 98713 98745 98778 98809 98840 98870 98899
2,3 98928 98956 98983 99010 99036 99061 99086 99111 99134 99158
2,4 99180 99202 99224 99245 99266 99286 99305 99324 99343 99361
2,5 99379 99396 99413 99430 99446 99461 99477 99492 99506 99520
2,6 99534 99547 99560 99573 99585 99598 99609 99621 99632 99643
2,7 99653 99664 99674 99683 99693 99702 99711 99720 99728 99736
2,8 99744 99752 99760 99767 99774 99781 99788 99795 99801 99807
2,9 99813 99819 99825 99831 99836 99841 99846 99851 99856 99861
3,0 99865 99869 99874 99878 99882 99886 99889 99893 99896 99900
3,1 99903 99906 99910 99913 99916 99918 99921 99924 99926 99929
3,2 99931 99934 99936 99938 99940 99942 99944 99946 99948 99950
3,3 99952 99953 99955 99957 99958 99960 99961 99962 99964 99965
3,4 99966 99968 99969 99970 99971 99972 99973 99974 99975 99976
3,5 99977 99978 99978 99979 99980 99981 99981 99982 99983 99983
3,6 99984 99985 99985 99986 99986 99987 99987 99988 99988 99989
3,7 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999
3,8 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999
3,9 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000

On dispose des relations simples suivantes entre \ \Phi et \ \Phi_0 (découlant de la formule de Chasles pour les intégrales) :

  • si \ x \geq 0, alors \ \Phi(x) = 0,5 + \Phi_0(x)
  • si \ x < 0, alors \ \Phi(x) = 0,5 - \Phi_0(-x)

Soit T une variable aléatoire suivant la loi normale centrée réduite :

  • pour tout \ x \in \R,\, P(T \leq x) = \Phi(x) et pour tout \ x \in \R^+,\, P(0 \leq T \leq x) = \Phi_0(x)
  • pour tout couple \ x_1,\, x_2 de réels tels que \ x_1 \leq x_2, \ P(x_1 \leq T \leq x_2) = \Phi(x_2)- \Phi(x_1).
Exemples numériques

À l'aide de la table ci-dessus, on obtient, pour la variable aléatoire précédente :

  • \ P(0 \leq T \leq 1,7) = \Phi_0(1,7) \simeq 0,4554
  • \ P(T \leq 1,7) = \Phi(1,7) = 0,5 + \Phi_0(1,7) \simeq 0,9554
  • \ P(-0,3 \leq T \leq 1,7) = \Phi(1,7)- \Phi(-0,3) = 0,5 + \Phi_0(1,7) - 0,5 + \Phi_0(0,3) \simeq 0,5733
Page générée en 0.009 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique