Test de normalité - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.

Ces tests prennent une place importante en statistiques. En effet, de nombreux tests supposent la normalité des distributions pour être applicables. En toute rigueur, il est indispensable de vérifier la normalité avant d'utiliser les tests. Cependant, de nombreux tests sont suffisamment robustes pour être utilisables même si les distributions s'écartent de la loi normale.

Approches empiriques et graphiques

Histogramme de la distribution

Il est possible de visualiser la forme de la distribution des données à analyser en les représentant sous forme d'histogramme puis de comparer la forme de cet histogramme avec une courbe représentant une loi normale (les paramètres de cette loi étant calculés à partir des données à analyser). Ceci ne permet pas de conclure à la normalité des données mais peut donner un idée du type de loi sous-jacente : loi normale, loi de Cauchy ou loi de Student si la distribution semble symétrique, loi log-normale, loi gamma, loi de Weibull, loi exponentielle ou loi bêta si la distribution est asymétrique.

Normality histogram.png

Histogramme des résidus

Il est également possible de représenter l'histogramme des résidus(c'est-à-dire la différence entre la distribution observée et la loi normale). Les résidus doivent suivre également un loi normale.

Boîte à moustaches (box-plot)

Une boîte à moustaches permet de visualiser rapidement la symétrie de la distribution des données réelles et la présence de valeurs atypiques.

Normality box-plot.png

Graphe quantile-quantile (qq-plot)

Coefficients d'asymétrie et d'aplatissement

Les Coefficients d'asymétrie et d'aplatissement sont également utiles pour définir une loi normale.

Pour l'aplatissement : ~ G_2 = \frac{(n+1)\,n}{(n-1)\,(n-2)\,(n-3)} \; \sum_{i=1}^n \left( \frac {x_i - \bar{x}} \sigma \right) ^4 - 3\,\frac{(n-1)^2}{(n-2) (n-3)}

et pour l'asymétrie : G_1 = \frac n {(n-1)\,(n-2)} \; \sum_{i=1}^n \left( \frac {x_i - \bar{x}} \sigma \right) ^3

avec σ est la racine d'un estimateur non biaisé de la variance.

On sait effectivement que le coefficient d'asymétrie vaut zéro pour toute loi normale, tandis que le coefficient d'aplatissement vaut 3 (0 si normalisé)

Page générée en 0.060 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise