Fonction chi de Legendre - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

En mathématiques, la fonction chi de Legendre est définie par

La transformée discrète de Fourier de la fonction chi de Legendre en respectant l'ordre n est la fonction zeta d'Hurwitz (Cvijovic).

La fonction chi de Legendre est un cas particulier de la fonction transcendante de Lerch, et est donnée par

\chi_n(z)=2^{-n}z\,\Phi (z^2,n,1/2)\, .

Publication en langue anglaise

  • Djurdje Cvijovic and Jacek Klinowski. Math. Comp. 68 (1999), 1623-1630, 1999. (abstract)
Page générée en 0.079 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise