Anneau non commutatif de polynômes - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Définition de la structure d'algèbre sur un anneau commutatif A

Si A est commutatif, la multiplication A\times A[X]\to A[X] , définie via l'inclusion de A dans A[X], munit ce dernier d'une structure naturelle de A-module pour laquelle la multiplication est bilinéaire : (aP) * (bQ) = (ab)(P * Q) pour tout a,b\in A et P,Q\in A[X] (ici les multiplications internes de A[X] sont indiquées par " * " et les multiplications concernant A par juxtaposition ; comme cette règle implique en particulier 1p * b1 = 1bp * 1, pour a=1,\;P=p,b\in A, Q=1 , donc pb = bp, elle ne peut s'appliquer que lorsque A est commutatif). Ceci montre que dans ce cas, l'anneau A[X] est aussi une A-algèbre.

Divisions par X − u

Comme le coefficient dominant 1 du polynome Xu est évidemment inversible, les divisions à droite et à gauche sont possibles. Soient  P \in A[X] et u \in A . On a alors :

Théorème

Le reste de la division à gauche du polynôme P par Xu est égal à la valeur à droite Pd(u).

Posons \quad Q=b_{n-1}X^{n-1}+...+b_1X+b_0

On a P = Q(Xu) + R et en groupant les termes de même degré du second membre :

 \quad P= b_{n-1}X^n+(b_{n-2}-b_{n-1}u)X^{n-1}+...(b_0-b_1u)X-b_0u + R

Si on remplace alors X par u dans le membre de droite (ce qui est bien le calcul de la valeur à droite) on constate immédiatement que les termes provenant du produit Q(Xu) s'annulent 2 à 2 et on obtient le résultat annoncé.

Remarquons que, lorsque u n'est pas central, on ne pouvait pas faire appel au théorème précédent et raisonner que Pd(u) = Qd(u)(Xu)d(u) + R = Qd(u).0 + R = R. Mais en reprenant la preuve de ce théorème on peut justifier néanmoins cette formule. On observe que dans cette preuve on a écrit P[X: = u] sous la forme de la valeur à droite, et que la preuve n'a utilisé que la commutation de u avec les coefficients bj du polynome à droite ; or, dans la formule considérée cette commutation est valable car les seuls coefficients du polynome Xu à droite sont b1 = 1 et b0 = u, qui commutent avec u.

On a le résultat symétrique :

Le reste de la division à droite du polynôme P par Xu est égal à la valeur à gauche Pg(u).
Corollaire

Le polynôme P est divisible à gauche par Xu si et seulement si Pd(u) = 0 et le polynôme P est divisible à droite par Xu si et seulement si Pg(u) = 0

Page générée en 0.086 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise