Cependant, la description de l'interaction forte faite par cette théorie ne peut vérifier l'expérience que si elle présente un certain nombre de phénomènes purement quantiques :
Ces propriétés, bien qu'observées dans les simulations ou dans les accélérateurs de particules, ne sont pas encore comprises dans la théorie de Yang-Mills. On peut parfois les expliquer dans des modèles extrêmement simplifiés, mais ces preuves ne s'étendent pas à la théorie complète.
Les premières équations de Yang-Mills à être introduites étaient les équations de Yang-Mills pour l'électromagnétisme, qui remplacent celles de Maxwell :
ou dA est l'extension covariante de jauge de la dérivée extérieure,
Le succès de la théorie de Yang-Mills avec l'électromagnétisme amena à se poser la question de son efficacité éventuelle à traiter les deux autres forces quantiques : l'interaction nucléaire faible et forte. Cependant, la théorie utilise des vecteurs d'interaction de masse nulle : cela fonctionne pour l'électromagnétisme, dont le vecteur est le photon. Mais cela fut un obstacle pour les deux interactions nucléaires, dont on savait qu'au moins une partie était transmise par des bosons massifs.
La compréhension du mécanisme de Higgs, qui donne une masse aux vecteurs des interactions nucléaires, et de l'unification électro-faible, qui réunit électromagnétisme et interaction faible dans une même description théorique, constituèrent les deux principaux éléments à partir desquels la théorie de Yang-Mills put s'appliquer à ces deux interactions quantiques.
L'interaction forte révéla en fait une propriété remarquable de la théorie de Yang-Mills elle-même : la liberté asymptotique. Cela permit la description de cette interaction dans SU(3) au travers de la chromodynamique quantique, qui utilise les mêmes concepts.