Une suite d'éléments d'un espace vectoriel topologique est dite de Cauchy au sens des espaces uniformes si pour tout voisinage de l'origine, il existe un rang à partir duquel la différence entre deux termes quelconques de la suite est toujours dans ce voisinage. L'espace vectoriel est dit complet si toute suite de Cauchy converge.
S'il existe une distance d invariante dont les boules constituent une base d'ouverts pour un espace vectoriel topologique localement convexe E, cette distance peut être modifiée pour que ses boules soit convexes. Les applications suivantes de E dans ℝ forment alors une famille séparante de semi-normes continues indexée par les entiers positifs :
Toute boule centrée sur l'origine pour la distance d contient donc la « boule unité » de l'une des semi-normes.
S'il existe une suite séparante de semi-normes continues (pk) sur un espace vectoriel topologique complet E et qui engendre la topologie de E, ces normes peuvent être modifiées pour que la suite soit croissante. Dans ce cas, les boules de semi-normes forment une base de voisinages de l'origine. L'application d suivante définit alors une distance invariante sur E :
Si l'hypothèse de convexité locale n'est pas satisfaite, comme sur les espaces Lp avec p < 1, l'existence d'un distance invariante et complète ne suffit pas à définir une structure d'espace de Fréchet.
L'espace des applications linéaires continues entre deux espaces de Fréchet ne constituant pas a priori un espace de Fréchet, la construction d'une différentielle pour les fonctions continues entre deux espaces de Fréchet passe par la définition de la dérivée de Gâteaux.
Soit Φ une fonction définie sur un ouvert U d'un espace de Fréchet X, à valeurs dans un espace de Fréchet Y.
La dérivée de Gâteaux de Φ en un point x de U et dans une direction h de X est la limite dans Y (lorsqu'elle existe)
(la variable t étant réelle)
La fonction Φ est dite Gâteaux-différentiable en x s'il existe une application linéaire continue Φ'G(x ) de X dans Y telle que pour tout h de X, (Φ'G(x ))(h) = Φ'(x ; h).
La différentielle de l'application Φ peut alors être vue comme une fonction définie sur une partie de l'espace de Fréchet X×X et à valeurs dans Y. Elle peut éventuellement être différentiée à son tour.
Par exemple, l'opérateur linéaire de dérivation D : C∞([0,1]) → C∞([0,1]) défini par D (f ) = f ' est infiniment différentiable. Sa première différentielle est par exemple définie pour tout couple (f, h) de fonctions infiniment dérivables par D' (f )(h) = h' , autrement dit D' (f ) = D.
Cependant, le théorème de Cauchy-Lipschitz ne s'étend pas à la résolution des équations différentielles ordinaires sur des espaces de Fréchet en toute généralité.