En mathématiques et plus précisément en théorie des groupes, le groupe des quaternions est un cas particulier de groupe non abélien d'ordre 8.
La représentation du groupe des quaternions irréductible de dimension 4 sur les nombres réels forme un corps gauche, c'est-à-dire non commutatif. Il est appelé corps des quaternions.
Le groupe des quaternions est souvent désigné par le symbole Q ou Q8 et est écrit sous forme multiplicative, avec les 8 éléments suivants :
Ici, 1 est l'élément neutre,
Considérant un espace vectoriel réel de dimension quatre dont une base est notée {1, i, j, k}, on la munit d'une structure d'algèbre associative en utilisant la table de multiplication ci-dessus et la distributivité. Le résultat est un corps appelé les corps des quaternions. Inversement, on peut démarrer avec les quaternions et définir le groupe des quaternions comme le sous-groupe multiplicatif constitué des 8 éléments
La théorème d'Artin-Wedderburn généralise cette approche. Il permet, avec la théorie des représentations d'un groupe fini de construire des algèbres semi-simples contenant un corps gauche, c'est-à-dire non commutatif.
Les trois éléments i, j et k sont tous d'ordre 4 dans Q et deux quelconques d'entre eux engendrent le groupe entier. Q admet la présentation
On peut prendre, par exemple, x = i et y = j.
Le centre et le sous-groupe des commutateurs de Q est le sous-groupe {±1}. Le groupe quotient Q/{±1} est isomorphe au groupe de Klein V. Les classes de conjugaison sont au nombre de cinq : {1}, {-1}, {i, -i}, {j, -j} et {k, -k}.
Le groupe des automorphismes intérieurs de Q est isomorphe à Q modulo son centre, et est par conséquent aussi isomorphe au groupe de Klein. Le groupe des automorphismes de Q est isomorphe à S4, le groupe symétrique sur quatre lettres. Le groupe des automorphismes extérieurs de Q est alors S4/V qui est isomorphe à S3. Le groupe des quaternions Q peut être vu comme agissant sur les 8 éléments non nuls de l'espace vectoriel à 2 dimensions sur le corps fini F3
La table de multiplication pour Q est donnée par :
1 | i | j | k | -1 | -i | -j | -k | |
---|---|---|---|---|---|---|---|---|
1 | 1 | i | j | k | -1 | -i | -j | -k |
i | i | -1 | k | -j | -i | 1 | -k | j |
j | j | -k | -1 | i | -j | k | 1 | -i |
k | k | j | -i | -1 | -k | -j | i | 1 |
-1 | -1 | -i | -j | -k | 1 | i | j | k |
-i | -i | 1 | -k | j | i | -1 | k | -j |
-j | -j | k | 1 | -i | j | -k | -1 | i |
-k | -k | -j | i | 1 | k | j | -i | -1 |
Le groupe ainsi obtenu est non commutatif comme on peut le voir sur la relation