Groupe des quaternions - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Graphe des cycles de Q. Chaque couleur précise une série de puissances d'un élément quelconque connecté à l'élément neutre (1). Par exemple, le cycle rouge reflète le fait que i 2 = -1, i 3 = -i  et i 4 = 1. Le cycle rouge reflète aussi le fait que (-i )2 = -1, (-i )3 = i  et (-i )4 = 1.

En mathématiques et plus précisément en théorie des groupes, le groupe des quaternions est un cas particulier de groupe non abélien d'ordre 8.

La représentation du groupe des quaternions irréductible de dimension 4 sur les nombres réels forme un corps gauche, c'est-à-dire non commutatif. Il est appelé corps des quaternions.

Définition

Le groupe des quaternions est souvent désigné par le symbole Q ou Q8 et est écrit sous forme multiplicative, avec les 8 éléments suivants :

Q = {1, -1, i, -i, j, -j, k, -k}\,

Ici, 1 est l'élément neutre, (- 1)^2 = 1\, et ( - 1).a = a.(- 1) = - a\, pour tout a dans Q. Les règles de multiplication restantes peuvent être obtenues à partir de la relation suivante :

i^2 = j^2 = k^2 = ijk = -1\,

Propriétés

Représentation

Considérant un espace vectoriel réel de dimension quatre dont une base est notée {1, i, j, k}, on la munit d'une structure d'algèbre associative en utilisant la table de multiplication ci-dessus et la distributivité. Le résultat est un corps appelé les corps des quaternions. Inversement, on peut démarrer avec les quaternions et définir le groupe des quaternions comme le sous-groupe multiplicatif constitué des 8 éléments {1, - 1, i, - i, j, - j, k, - k}\, .

La théorème d'Artin-Wedderburn généralise cette approche. Il permet, avec la théorie des représentations d'un groupe fini de construire des algèbres semi-simples contenant un corps gauche, c'est-à-dire non commutatif.

Nature du groupe

Les trois éléments i, j et k sont tous d'ordre 4 dans Q et deux quelconques d'entre eux engendrent le groupe entier. Q admet la présentation

\langle x,y \mid x^4 = 1, x^2 = y^2, yxy^{-1} = x^{-1}\rangle

On peut prendre, par exemple, x = i et y = j.

Le centre et le sous-groupe des commutateurs de Q est le sous-groupe {±1}. Le groupe quotient Q/{±1} est isomorphe au groupe de Klein V. Les classes de conjugaison sont au nombre de cinq : {1}, {-1}, {i, -i}, {j, -j} et {k, -k}.

Le groupe des automorphismes intérieurs de Q est isomorphe à Q modulo son centre, et est par conséquent aussi isomorphe au groupe de Klein. Le groupe des automorphismes de Q est isomorphe à S4, le groupe symétrique sur quatre lettres. Le groupe des automorphismes extérieurs de Q est alors S4/V qui est isomorphe à S3. Le groupe des quaternions Q peut être vu comme agissant sur les 8 éléments non nuls de l'espace vectoriel à 2 dimensions sur le corps fini F3

Table du groupe

La table de multiplication pour Q est donnée par :

1 i j k -1 -i -j -k
1 1 i j k -1 -i -j -k
i i -1 k -j -i 1 -k j
j j -k -1 i -j k 1 -i
k k j -i -1 -k -j i 1
-1 -1 -i -j -k 1 i j k
-i -i 1 -k j i -1 k -j
-j -j k 1 -i j -k -1 i
-k -k -j i 1 k j -i -1

Le groupe ainsi obtenu est non commutatif comme on peut le voir sur la relation ij = - ji\, . Cependant Q est un groupe hamiltonien : chaque sous-groupe de Q est un sous-groupe normal, mais le groupe est non abélien. Chaque groupe hamiltonien contient une copie de Q.

Page générée en 0.140 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise