Introduction
L’harmonie des sphères est une théorie d'origine pythagoricienne, fondée sur l'idée que l'univers est régi par des rapports numériques harmonieux, et que les distances entre les planètes dans la représentation géocentrique de l'univers — Lune, Mercure, Vénus, Soleil, Mars, Jupiter, Saturne, sphère des fixes — sont réparties selon des proportions musicales, les distances entre planètes correspondant à des intervalles musicaux. La secte des pythagoriciens se partageait entre mathématiciens (de mathematikoi en Grec, « ceux qui savent ») et acousmaticiens (acousmatikoi, « ceux qui écoutent » les préceptes du maître Pythagore), mais les deux étaient intéressés par la notion, à la fois scientifique (astronomie, proportions, musicologie) et métaphysique (notion de Tout, d'harmonie).
Il faut s'entendre sur les mots, sur l'expression grecque. En grec, on dit harmonia tou kosmou, "harmonie du cosmos", "musique du monde". Le mot "harmonie" a un sens très large, il concerne surtout les bonnes proportions, la convenance entre parties et entre parties et tout. Le mot "musique" (mousikê) "renvoie à l'Art des Muses (suivantes d'Apollon), à toute culture de l'esprit, artistique ou scientifique, par opposition à la gymnastique, culture du corps" (Monique Dixsaut). Le mot "sphères", d'origine aristotélicienne, désigne la zone d'influence d'une planète (Du ciel).
La théorie de l'harmonie des sphères chez les pythagoriciens est attestée dès Platon (La République, 530d, 617b ; Cratyle, 405c) et surtout Aristote (Du ciel, 290b12). Elle date sans doute d'une période postérieure à Pythagore (530 av. J.-C.) et même Philolaos (400 av. J.-C.).
Variantes
Dans les textes anciens, cette théorie connaît beaucoup de variantes, et l'on peut distinguer trois formes d'harmonie des sphères — même si cette distinction n'est pas proposée par les textes anciens.
- Dans un premier type d'harmonie des sphères, la musique céleste se compose d'une échelle montante ou descendante qui procède par degrés conjoints, et dans laquelle les intervalles sont définis par les distances entre planètes. Ainsi, chez Pline l'Ancien, Histoire Naturelle II, 84, la distance Terre-Lune est évaluée à un ton, et les planètes sont ensuite étagées selon une gamme montante.
- Dans le deuxième type, il s'agit également d'une gamme procédant par intervalles conjoints — d'un demi-ton ou d'un ton, exceptionnellement d'un ton et demi — dans laquelle les intervalles entre planètes sont définis par la vitesse respective des planètes. C'est l'interprétation qui semble être celle de Cicéron, dans le fameux Songe de Scipion qui terminait sa République, VI,18. Le son émis par la Lune, qui est la planète qui tourne le moins vite, est ainsi présenté comme le plus grave, alors que la sphère des fixes émet le son le plus aigu.
- Enfin, le troisième type d'harmonie des sphères repose sur une interprétation du fameux passage du Timée (35-36), dans lequel Platon décrit la fabrication des proportions de l'Âme du Monde par le Démiurge. Ce passage est fondé sur la série numérique 1, 2, 3, 4, 9, 8, 27 — qui correspond à la fusion de la série des premières puissances de 2 (2, 4, 8) et de la série des premières puissances de 3 (3, 9, 27). Or, de cette série, on peut tirer les rapports numériques sur lesquels sont fondés les intervalles musicaux : le rapport de 1 à 2 (rapport double) correspond à l'octave, le rapport de 2 à 3 (rapport appelé hémiole - selon le grec - ou sesquialtère selon le terme latin) à la quinte, le rapport de 3 à 4 (épitrite ou sesquitierce) à la quarte, et le rapport de 9 à 8 (épogde ou sesquioctave) au ton. Ce passage difficile est interprété de manières différentes dans de nombreuses spéculations néoplatoniciennes, qui utilisent cette série pour décrire les rapports de distances entre les planètes — on peut évoquer notamment l'interprétation de Macrobe, dans le Commentaire au Songe de Scipion, II, 2-4. Selon Luc Brisson, "trois types d'intervalles correspondent à des rapports musicaux, déjà connus à l'époque de Platon : la quarte 4/3, la quinte 3/2 et le ton 9/8. (...) Considérée d'un point de vue strictement musical, la structure mathématique de l'Âme du monde comprendrait donc 4 octaves, une quinte et un ton : 2/1 x 2/1 x 2/1 x 2/1 x 3/2 x 9/8 = 27. Mais il faut bien remarquer que Platon n'a pas du tout l'intention de faire la théorie du type de musique que pourraient émettre les corps célestes" (Platon, Timée/Critias, Garnier-Flammarion, 1996, p. 287).