L'indicatrice d'Euler est une fonction essentielle de l'arithmétique modulaire, elle est à la base de résultats fondamentaux, à la fois en mathématiques pures et appliquées.
Cette propriété est une conséquence directe du calcul explicite de l'indicatrice.
La cryptologie utilise largement cette fonction. Le code RSA se fonde sur le théorème d'Euler, indiquant que si n est un entier strictement positif et a un entier premier avec n, alors aφ(n) ≡ 1 (mod n).
Une autre branche de la théorie de l'information utilise l'indicatrice : la théorie des codes. C'est les cas des codes correcteurs, et particulièrement des codes cycliques. Ce type de code se construit à l'aide de polynôme cyclotomique et le degré du polynôme cyclotomique Φn d'indice n à coefficients dans les entiers est égal à φ(n). Plus précisément, on dispose des égalités suivantes :
La somme et le produit sont étendus à tous les diviseurs positifs d de n.
La formule d'inversion de Möbius permet d'inverser cette somme :
Ici, μ désigne la fonction de Möbius usuelle définie sur l'ensemble des entiers strictement positifs, la démonstration est proposée dans l'article associé.
Les deux fonctions génératices présentées ici sont des conséquences directes du fait que :
Une série de Dirichlet utilisant
qui est dérivé depuis :
ou ζ(s) est la Fonction zêta de Riemann.
Une série de Lambert utilisant
qui converge pour |q|<1.
dérivé de :
avec
![]() | +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 |
---|---|---|---|---|---|---|---|---|---|---|
0+ | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | |
10+ | 4 | 10 | 4 | 12 | 6 | 8 | 8 | 16 | 6 | 18 |
20+ | 8 | 12 | 10 | 22 | 8 | 20 | 12 | 18 | 12 | 28 |
30+ | 8 | 30 | 16 | 20 | 16 | 24 | 12 | 36 | 18 | 24 |
40+ | 16 | 40 | 12 | 42 | 20 | 24 | 22 | 46 | 16 | 42 |
50+ | 20 | 32 | 24 | 52 | 18 | 40 | 24 | 36 | 28 | 58 |
60+ | 16 | 60 | 30 | 36 | 32 | 48 | 20 | 66 | 32 | 44 |
70+ | 24 | 70 | 24 | 72 | 36 | 40 | 36 | 60 | 24 | 78 |
80+ | 32 | 54 | 40 | 82 | 24 | 64 | 42 | 56 | 40 | 88 |
90+ | 24 | 72 | 44 | 60 | 46 | 72 | 32 | 96 | 42 | 60 |
Certaines inégalités impliquant la fonction
et
Pour un nombre premier n, clairement
Pour tous les n > 1 :
Pour un grand n aléatoire, ces bornes ne peuvent pas être encore améliorées, ou être plus précises :
Une paire d'inégalités combinant la fonction