Modèle de Drude - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Conductivité thermique d'un métal

Il convient de doubler l'équation de transport du courant (c’est-à-dire de transport des particules) par une équation de transport de la chaleur :

 j_q=-\kappa \nabla T

on obtient alors que le rapport  {\kappa \over {\sigma}} des conductivités thermique et électrique est directement proportionnel à la température, le coefficient de proportionnalité étant désigné par le nombre de Lorenz :

 L = {\kappa \over {\sigma T}}={3\over 2}({k_b \over e})^2

Cette loi de proportionnalité est connue sous le nom de loi de Wiedemann et Franz. Le résultat numérique indiqué ci-dessus vaut à peu près la moitié des valeurs obtenues expérimentalement. L'utilisation de la théorie du transport et du modèle quantique permet d'accéder à une valeur plus proche de la réalité pour le rapport  {\kappa \over {\sigma T}} (c'est-à-dire le nombre de Lorenz), la valeur obtenue étant alors :

 L = {\kappa \over {\sigma T}}={\pi^2\over 3}({k_b \over e})^2
Page générée en 0.135 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise