Le paradoxe de Russell repose sur un énoncé démontrable, ou encore universellement valide, du calcul des prédicats du premier ordre avec un symbole de relation binaire, soit R, à savoir :
puisque l'existence d'un tel y mène à une contradiction. C'est ce que l'on a déjà remarqué à propos du paradoxe du barbier. On a ainsi une version très épurée d'une certaine forme d'argument diagonal. On peut remarquer que, si la démonstration donnée ci-dessus repose sur le principe du tiers exclu, il n'est pas très difficile de la réaliser en logique intuitionniste.
Dans la théorie des ensembles de Zermelo, en fait dans toute théorie qui admet le schéma d'axiomes de compréhension (restreint), on montre, en réinterprétant le paradoxe, que pour tout ensemble A, il existe un ensemble y qui n'appartient pas à A, à savoir :
On montre ainsi qu'il ne peut y avoir d'ensemble de tous les ensembles.