Théorème de Borel-Cantelli - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Dans la théorie des probabilités, le lemme de Borel-Cantelli, parfois aussi appelé théorème de Borel-Cantelli, concerne une suite d'événements. Sous une forme un peu plus générale, il est également valable en théorie de la mesure. Le lemme stipule que :

Lemme de Borel-Cantelli — Si la somme des probabilités d'une suite \scriptstyle\ (A_n)_{n\ge 0} d'événements d'un espace probabilisé \scriptstyle\ \left(\Omega, \mathcal A, \mathbb{P}\right)\ est finie, alors la probabilité qu'une infinité d'entre eux se réalisent simultanément est nulle.

L'indépendance des événements n'est pas nécessaire. Par exemple, considérons une suite \scriptstyle\ (X_n)_{n\ge 1} de variables aléatoires, telle que, pour tout \scriptstyle\ n\ge 1 ,

\textstyle \mathbb{P}(X_n= 0) = \frac1{n^2}.

La somme des \scriptstyle\ \mathbb{P}(X_n = 0) est finie, donc d'après le lemme de Borel-Cantelli la probabilité que \scriptstyle\ X_n = 0 se produise pour une infinité d'indices \scriptstyle\ n est 0. En d'autres termes, avec une probabilité de 1, \scriptstyle\ X_n est non nul à partir d'un certain rang (aléatoire) \scriptstyle\ n_0. On a donc appliqué le lemme de Borel-Cantelli à la suite d'évènements \scriptstyle\ (A_n)_{n\ge 0} définie par

\textstyle A_n=\{X_{n+1}= 0\} =\{\omega\in\Omega\ |\ X_{n+1}(\omega)= 0\}.

Théorème de Borel-Cantelli (théorie de la mesure)

Pour un espace mesuré général \scriptstyle\ (X,\mathcal{A},\mu) , le lemme de Borel-Cantelli prend la forme suivante :

Théorème de Borel-Cantelli — Soit \scriptstyle\ (A_n)_{n\ge 0} une suite dans \scriptstyle\ \mathcal{A} . Si

\sum_{n\ge 0}\mu(A_n)<+\infty,

alors

\mu(\limsup_n A_n) = 0.

Limite supérieure d'ensembles

Définition —  La limite supérieure \scriptstyle \limsup_n\, A_n d'une suite \scriptstyle\ (A_n)_{n\ge 0}\, de parties d'un ensemble \scriptstyle \Omega est l'ensemble des éléments \scriptstyle \omega de \scriptstyle \Omega tels que l'assertion \scriptstyle \{\omega\in A_k\} soit vérifiée pour une infinité d'indices \scriptstyle k\ge 0 .

En d'autres termes, on peut dire que \scriptstyle\ \omega\in\limsup_n\, A_n si et seulement si l'ensemble \scriptstyle \{k\ge 0\ \vert\ \omega\in A_k\} est infini, ou bien non borné. Une formulation équivalente est la suivante : pour tout \scriptstyle n\ge 0 , on peut trouver \scriptstyle k\ge n tel que \scriptstyle \omega\in A_k . Cette dernière formulation fournit une écriture commode de la limite supérieure d'ensembles à l'aide d'opérations élémentaires sur les ensembles :

 \limsup_n A_n =\bigcap_{n\ge 0}(\bigcup_{k\ge n} A_k).

Sous l'influence de la terminologie anglo-saxonne, on dira aussi parfois que \scriptstyle\ \omega\in\limsup_n\, A_n si et seulement si \scriptstyle\ \{\omega\in A_k\}\ "infiniment souvent" ou bien "infinitely often", d'où la notation rencontrée dans certains ouvrages :

 \mathbb{P}\left(\limsup_n A_n\right)=\mathbb{P}\left(A_n\quad\text{i.o.}\right).

Finalement, remarquons que la définition " \scriptstyle\ \omega\in\limsup_n\, A_n si et seulement si \scriptstyle\ \omega\ appartient à une infinité de \scriptstyle\ A_k\ " peut induire en erreur : si par exemple toutes les parties \scriptstyle\ A_k\ sont égales, il se peut que \scriptstyle\ \omega\ appartienne à \scriptstyle\ A_k\ pour une infinité d'indices \scriptstyle\ k\ , et il se peut donc que \scriptstyle\ \omega\ appartienne à \scriptstyle\ \limsup_n\, A_n, sans pour autant qu' \scriptstyle\ \omega\ appartienne à une infinité de \scriptstyle\ A_k\ (puisqu'il n'existe, au fond, qu'un seul \scriptstyle\ A_k ).

Loi du zéro-un de Borel

Le lemme de Borel-Cantelli ne doit pas être confondu avec la loi du zéro-un de Borel, parfois appelée second lemme de Borel-Cantelli :

Loi du zéro-un de Borel — Si les événements \scriptstyle\ A_n sont indépendants, alors \scriptstyle\ \mathbb{P}\left(\limsup_n A_n\right) vaut 0 ou 1 suivant que la série de terme général \scriptstyle\ \mathbb{P}(A_n) est convergente ou divergente.

La loi du zéro-un de Borel montre en particulier que l'hypothèse \scriptstyle\ \sum_{n\ge 0}\mu(A_n)<+\infty du lemme de Borel-Cantelli ne peut en aucun cas être affaiblie en \scriptstyle\ \lim_{n}\mu(A_n)=0 . En effet on peut avoir simultanément, d'une part \scriptstyle\ \lim_{n}\mathbb{P}(A_n)=0 , d'autre part (indépendance des \scriptstyle\ A_n et \scriptstyle\ \sum_{n\ge 0}\mathbb{P}(A_n)=+\infty ), donc on peut avoir simultanément :

\lim_{n}\mathbb{P}(A_n)=0\qquad\text{et}\qquad \mathbb{P}(\limsup_n A_n) = 1.
Page générée en 0.607 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise