Les champs d’application de la Théorie des Jeux sont très variés par exemples :
Elle cherche les stratégies rationnelles dans des situations où les gains d’un acteur dépendent non seulement de son comportement et des conditions de marché, mais aussi de celui des autres intervenants, lesquels peuvent poursuivre des objectifs différents ou contradictoires. On lui trouve aussi des applications en sciences politiques.
Les résultats peuvent être appliqués à des divertissements (comme le jeu télévisé « Friend or Foe » sur une chaîne câblée spécialisée aux États-Unis, Game Show Network) ou à des considérations plus poignantes :
Le Professeur Thomas Schelling, « prix Nobel d'économie » 2005, s'est spécialisé dans l'explication des diverses stratégies utilisées (à utiliser) dans les conflits internationaux, tels la guerre froide et la guerre nucléaire (dissuasion..)
Albert W. Tucker a par exemple diffusé de nombreuses interprétations du dilemme du prisonnier dans la vie courante. Des biologistes ont utilisé la théorie des jeux pour comprendre et prévoir les résultats de l’évolution, en particulier la notion d’équilibre évolutivement stable introduit par John Maynard Smith dans son essais La théorie des jeux et l’évolution de la lutte (Game Theory and the Evolution of Fighting). Voir aussi son livre Evolution and the Theory of Games.
Il est à remarquer qu’en théorie de l’évolution, l’adversaire principal d’un individu n’est pas vraiment l’ensemble de ses prédateurs, mais l'ensemble des autres individus de son espèce et des autres espèces apparentées. Comme le fait remarquer Richard Dawkins, un brontosaure n'a pas besoin, pour survivre, de courir plus vite que le tyrannosaure qui le poursuit (ce qui lui serait impossible), mais simplement plus vite que le plus lent de ses congénères. Des phénomènes semblables se produisent en économie. Tout cela rejoint des considérations psychologiques : la conflictualité est plus liée à la ressemblance qu'à la différence.
Les probabilités fournissent à la théorie des jeux un outil conceptuel. Les statistiques peuvent l’alimenter en données, et les techniques d’optimisation lui fournir des résultats de calcul.
John Conway a mis en place une notation pour certains jeux et défini des opérations sur ces jeux, dans l’espoir d’étudier le jeu de go. À partir d’associations surprenantes d’idées, il a isolé une sous-classe avec des propriétés numériques, et a abouti à définir la classe très générale des nombres surréels. Cela dit, en dépit de ces progrès annoncés, aucun programme informatique n’arrive à jouer actuellement (2006) au go avec des performances de joueur international.