Sony a livré plus d'informations sur la nouvelle révision 65 nm du processeur Cell Broadband Engine, actuellement en production massive pour remplacer la première version du processeur gravée en 90 nm.
Le Cell en 65 nm viendra notamment remplacer son prédécesseur dans les PlayStation 3 de Sony, il aura l'avantage d'être 40 % plus petit que la version 90 nm, et surtout de moins chauffer. L'actuelle version 90 nm du processeur a un die tellement grand (222 mm²) que cela pose un réel problème de rendement, car Sony peut alors en placer moins sur une même galette de silicium (wafer). Avec une réduction de la surface du die du processeur de 40 %, la production pourra atteindre des rendements bien plus profitables.
Cette amélioration de rendement sera au moins aussi importante lors du passage du 65 nm au 45 nm, que Sony prévoit pour la première moitié de l'année 2009. Tous ces processeurs sont gravés grâce à la technologie SOI (Silicon On Insulator), utilisée par IBM et AMD.
En chauffant moins, le Cell en 65 nm va aussi pouvoir atteindre des fréquences plus élevées. Sony annonce jusqu'à 6 GHz sous une tension d'1,3 V, là où le Cell 90 nm ne pouvait atteindre que 5,2 GHz, à la limite de ses capacités. Sur une tension d'1 V, le Cell 65 nm atteint les 4 GHz sans problème.
Cette montée en fréquence est aussi due à la séparation de l'alimentation de la SRAM (mémoire cache du processeur) et du reste de la puce. Deux lignes de tension indépendantes pour améliorer les performances et la consommation du processeur.
Notez que IBM compte bien utiliser sa dernière trouvaille, l'eDRAM, dans une prochaine génération de processeurs Cell.
Si le processeur CELL a été, initialement conçu pour les consoles de jeux, sa très grande puissance de calcul le rend très attractif dans de nombreux domaines comme le calcul intensif (HPC), le traitement d'images (TI) et la vision industrielle (VI). Sa complexité rend le portage d'applications très complexe car il faut optimiser les calculs et les transferts. Optimiser les transferts signifie optimiser deux types de transferts : ceux depuis la mémoire externe vers un SPE et ceux entre SPE. Cela revient à implémenter des modèles de transfert pour des calculs dits SIMD ou pipeline. Optimiser un code SPE, n'est alors pas plus compliqué que d'optimiser un code sur un processeur Altivec. Le jeu d'instruction est très proche et supporte les calculs en flottant et en entiers. Fin 2007, seules deux équipes de R&D au monde ont réussi cela, la société Rapidmind rachetée en aout 2009 par Intel et l'équipe AXIS de l'IEF (Institut d'Electronique Fondamentale) (Université Paris Sud). Rapidmind a l'avantage de pouvoir en plus déployer du code sur GPU (carte 3D NVidia et AMD-ATI).