Comatrice - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Variations de la fonction déterminant

La formule de Leibniz montre que le déterminant d'une matrice A s'exprime comme somme et produit de composantes de A. Il n'est donc pas étonnant que le déterminant ait de bonnes propriétés de régularité. On suppose ici que K est le corps des réels.

Déterminant dépendant d'un paramètre

Si t\mapsto A(t) est une fonction de classe \mathcal C^k à valeurs dans les matrices carrées d'ordre n, alors t\mapsto \det A(t) est également de classe \mathcal C^k .

La formule de dérivation s'obtient en faisant intervenir les colonnes de A

\frac{{\rm d}}{{\rm d}t} \left(\det (A_1(t),\dots, A_n(t))  \right)= \sum_{i=1}^n \det (A_1(t),\dots, A_{i-1}(t),A'_i(t),A_{i+1}(t),\dots, A_n(t))

Cette formule est analogue formellement à la dérivée d'un produit de n fonctions numériques.

Le déterminant comme fonction sur l’espace des matrices

  • L’application qui à la matrice A\ associe son déterminant est continue (membre de \mathcal C^0 ).
    Cette propriété a des conséquences topologiques intéressantes :
    ainsi le groupe GL_n\left(\mathbb{R}\right) est un ouvert,
    le sous-groupe SL_n\left(\mathbb{R}\right) est un fermé.
  • Cette application est en fait différentiable (membre de \mathcal C^1 ), et même infiniment déférentiable (membre de \mathcal C^\infty ).
    En effet le calcul des cofacteurs peut être vu précisément comme un calcul de dérivée partielle
    \frac{\partial\det}{\partial E_{i, j}}\left(A\right) = {\rm Cof}\ A_{i, j}.
    Toutes ces dérivées partielles étant elles-mêmes des déterminants, par récurrence le déterminant est \mathcal C^\infty .
  • En outre on peut écrire le développement limité à l’ordre un du déterminant au voisinage de A\
    \det\left(A + H\right) = \det A + {\rm tr}\left({}^t{\rm Com}(A) . H\right) + \rm{o}\left(\left\|H\right\|\right),
    c’est-à-dire que si on munit \mathcal{M}_n(\mathbb{R}) de son produit scalaire canonique, l’application déterminant a pour gradient
    \nabla\det(A) = {\rm Com}\left(A\right).
    Notamment pour le cas où A\ est l’identité,
    \det\left(I + H\right) = 1 + {\rm tr}\left(H\right) + \rm{o}\left(\left\|H\right\|\right),
    \nabla\det\left(I\right) = I.

Propriétés de la comatrice

Nous avons

com(In) = In

et

pour toutes matrices M et N d'ordre n, com(MN) = com(N) com(M)

La comatrice est aussi compatible avec la transposition :

com(tM) = t (com(M)).

de plus,

det(com(M)) = det(M)n-1.

Si p(t) = det(M - tIn) est le polynôme caractéristique de M et que q est le polynôme défini par q(t) = (p(0) - p(t))/t, alors

tcom(M) = q(M).

La comatrice apparaît dans la formule de la dérivée d'un déterminant.

Pour A \in M_{n}(K) :

  • si A est de rang n (i.e. A inversible), Com(A) aussi. On a alors Com(A)=det(A)~^{t}A^{-1} et Com(A)^{-1}=\frac{1}{det(A)}~^{t}A .
  • si A est de rang n-1, Com(A) est de rang 1.
  • si A est de rang au plus n-2, Com(A)=0.

Si n \geq 3 et A \in M_{n}(K) , Com(Com(A))=det(A)^{n-2}\,A (et est donc nulle si, et seulement si, A n'est pas inversible). Si n=2, on a Com(Com(A))=A pour toute matrice A (ce qu'on peut inclure dans la formule précédente avec la convention x0 = 1 pour tout x \in K , y compris pour x=0).

Si n \geq 3 , les matrices A \in M_{n}(\mathbb{R}) telles que A=Com(A) sont la matrice nulle et les matrices spéciales orthogonales. Si n=2, ce sont les matrices multiples des matrices spéciales orthogonales.

Comatrice et produit vectoriel

Si A est une matrice d'ordre trois, elle agit sur les vecteurs de l'espace à trois dimensions muni d'une base orthonormée d'orientation directe. La comatrice de A décrit alors l'interaction de A avec le produit vectoriel:

Au \wedge Av={\rm Com}A\, (u \wedge v) .
Page générée en 0.104 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise