Dopage (semi-conducteur) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Un dopant, dans le domaine des semi-conducteurs, est une impureté ajoutée en petites quantités à une substance pure afin de modifier ses propriétés de conductivité.

Les propriétés des semi-conducteurs sont en grande partie régies par la quantité de porteurs de charge qu'ils contiennent. Ces porteurs sont les électrons ou les trous. Le dopage d'un matériau consiste à introduire, dans sa matrice, des atomes d'un autre matériau. Ces atomes vont se substituer à certains atomes initiaux et ainsi introduire davantage d'électrons ou de trous.

Les atomes de matériau dopant sont également appelés impuretés, et sont en phase diluée : leur concentration reste négligeable devant celle des atomes du matériau initial.

Conduction dans les semi-conducteurs

Un semi-conducteur est un solide cristallin dont les propriétés de conduction électrique sont déterminées par deux bandes d'énergie particulières : d'une part, la bande de valence, qui correspond aux électrons impliqués dans les liaisons covalentes ; d'autre part, la bande de conduction, comprenant les électrons dans un état excité, qui peuvent se déplacer dans le cristal.

Ces deux bandes sont séparées par un gap, une bande interdite que les électrons ne peuvent franchir que grâce à une excitation extérieure (par exemple, l'absorption d'un photon). La bande interdite correspond à une barrière d'énergie, dont l'ordre de grandeur est l'électron-volt.

Les électrons présents dans la bande de conduction permettent la conduction du courant. La conduction du courant peut être considérée de façon tout à fait équivalente en termes de trous d'électron se déplaçant dans la bande de valence. La densité d'électrons (concentration par unité de volume) est notée n, celle des trous p.

Dans un semi-conducteur intrinsèque, ou pur, il n'y a aucun atome dopant. Tous les électrons présents dans la bande de conduction proviennent donc de la bande de valence. Il y a donc autant d'électrons que de trous : n = p = ni ; ni est la concentration intrinsèque. Tout dopage sert à modifier cet équilibre entre les électrons et les trous, pour favoriser la conduction électrique par l'un des deux types de porteurs.

On a toujours la loi d'action de masse: \bar{p}\,\bar{n} = n_i^2

Atomes donneurs et accepteurs

L'atome d'impureté provoque des effets qui dépendent de la colonne qu'il occupe dans la classification périodique de Mendeleïev, par rapport à la colonne de l'atome qu'il remplace.

  • Si l'atome dopant appartient à la même colonne que l'atome qu'il remplace, ils sont isovalents (ou isoélectriques). Les électrons de valence de l'atome d'impureté remplacent exactement les électrons de l'atome initial. Les propriétés de conduction électrique du matériau ne sont pas modifiées.
  • Si l'atome dopant appartient à la colonne précédente, il manque alors un électron périphérique pour rétablir l'ensemble des liaisons covalentes initiales. Il apparaît alors une carence en électron, autrement dit un trou. L'atome inséré est dit accepteur (d'électron), car il est capable de recevoir un électron supplémentaire, provenant de la bande de valence. C'est un dopage P.
  • Si l'atome dopant appartient à la colonne suivante, il possède un électron supplémentaire par rapport à l'atome initial. Les liaisons covalentes initiales sont restaurées, mais un des électrons n'est pas utilisé dans ces liaisons. Il est donc sur un état libre du système. L'atome inséré est dit donneur (d'électron). C'est un dopage N.

Un même atome dopant peut être à la fois donneur et accepteur : il est alors dit amphotère. C'est par exemple le cas du Silicium (Si, colonne IV), qui est un dopant de l'Arséniure de gallium (AsGa) : si le Si se met en substitution d'un atome de Gallium (colonne III), il est donneur d'électron. S'il est en substitution d'un atome d'Arsenic (colonne V), il est accepteur.

Si l'énergie d'ionisation ΔE est inférieure à l'énergie thermique ambiante kT (où k est la constante de Boltzmann et T la température), alors les atomes d'impuretés sont ionisés à température ambiante.

Page générée en 0.152 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise