Cet effet ne peut pas être expliqué de manière satisfaisante lorsque l'on considère que la lumière est une onde, la théorie acceptée à l'époque, qui permet d'expliquer la plupart des phénomènes dans lesquels la lumière intervient, tel l'optique, et qui était traduite mathématiquement par la théorie de James Clerk Maxwell.
En effet, si l'on considère la lumière comme une onde, en augmentant son intensité et en attendant suffisamment longtemps, on devrait pouvoir fournir suffisamment d'énergie au matériau pour en libérer les électrons. L'expérience montre que l'intensité lumineuse n'est pas le seul paramètre, et que le transfert d'énergie provoquant la libération des électrons ne peut se faire qu'à partir d'une certaine fréquence.
L'interprétation d’Einstein, l'absorption d'un photon, permettait d'expliquer parfaitement toutes les caractéristiques de ce phénomène. Les photons de la source lumineuse possèdent une énergie caractéristique déterminée par la fréquence de la lumière. Lorsqu'un électron du matériau absorbe un photon et que l'énergie de celui-ci est suffisante, l'électron est éjecté; sinon l'électron ne peut s'échapper du matériau. Comme augmenter l'intensité de la source lumineuse ne change pas l'énergie des photons mais seulement leur nombre, on comprend aisément que l'énergie des électrons émis par le matériau ne dépend pas de l'intensité de la source lumineuse.
Après l'absorption du photon par l'atome, le photoélectron émis a une énergie
Ee = Eg − Eb
où Eb est l'énergie de liaison du photoélectron.
L'effet photoélectrique domine aux faibles énergies, mais la section efficace croît rapidement avec le numéro atomique Z :
 
où n varie de 4 à 5.
À des énergies et des numéros atomiques où ce processus est important, l'électron émis est absorbé sur une distance très courte de telle manière que toute son énergie est enregistrée dans le détecteur. Les rayons X qui sont émis dans la réorganisation du cortège électronique suite à l'émission de l'électron sont également absorbés dans le milieu.