L'onde électromagnétique est un modèle utilisé pour représenter les rayonnements électromagnétiques. Elle est associée à la notion de photon.
Il convient de bien distinguer :
Une onde lumineuse est une onde électromagnétique dont la longueur d'onde correspond au spectre visible, soit entre les longueurs d'onde 380 et 780 nm, ce qui correspond aux énergies de photon de 1.5 à 3 eV.
Comme toutes les ondes, une onde électromagnétique peut s'analyser en utilisant l'analyse spectrale ; on peut décomposer l'onde en ondes dites « monochromatiques » (voir aussi Spectre d'ondes planes).
Une onde électromagnétique monochromatique peut se modéliser par un dipôle électrostatique vibrant, ce modèle reflétant convenablement, par exemple, les oscillations du nuage électronique d'un atome intervenant dans la diffusion Rayleigh (modèle de l'électron élastiquement lié).
Les variations des champs électrique et magnétique sont liées par les équations de Maxwell, on peut donc représenter l'onde par un seul de ces champs, en général le champ électrique. On peut alors écrire l'équation générale d'une onde plane monochromatique :
où
On utilise aussi fréquemment la forme complexe :
On obtiendra alors les grandeurs physiques, réelles, en prenant la partie réelle de cette forme complexe.
La théorie ondulatoire de la lumière a été principalement développée par Christiaan Huygens dans les années 1670, et par Augustin Fresnel. Elle s'opposait à l'époque à la théorie corpusculaire, défendue principalement par René Descartes. Huygens travaillait principalement sur les lois de réflexion et de réfraction, Fresnel développa notamment les notions d'interférence et de longueur d'onde. Les approches ondulatoires et corpusculaires furent réunies par Albert Einstein lorsque celui-ci établit le modèle du photon en 1905, dans ses travaux sur l'effet photo-électrique.
La grande avancée théorique fut la synthèse des lois de l'électromagnétisme par James Clerk Maxwell. Les équations de Maxwell prédisaient la vitesse des ondes électromagnétiques, et la mesure de la vitesse de la lumière démontra que la lumière était de nature électromagnétique.
Les ondes radio, à basse fréquence et grande longueur d'onde, furent découvertes à la fin du XIXe siècle avec les travaux notamment d'Alexandre Popov, Heinrich Hertz, Édouard Branly et de Nikola Tesla. Les rayons X, à haute fréquence et faible longueur d'onde, furent découverts par Wilhelm Röntgen en 1895.
La polarisation correspond à la direction et à l'amplitude du champ électrique . Pour une onde non polarisée, ou naturelle, tourne autour de son axe de façon aléatoire et imprévisible au cours du temps. Polariser une onde correspond à donner une trajectoire définie au champ électrique. Il y a plusieurs sortes de polarisation:
La notion d'onde électromagnétique est complémentaire de celle de photon. En fait, l'onde fournit une description plus pertinente de la radiation pour les faibles fréquences (c'est-à-dire les grandes longueurs d'onde) comme les ondes radio.
En fait, l'onde électromagnétique représente deux choses :
Lorsque le flux d'énergie est grand devant l'énergie des photons, on peut considérer que l'on a un flux quasi-continu de photons, et les deux notions se recouvrent. Ceci n'est plus vrai lorsque le flux d'énergie est faible (on envoie les photons un par un), la notion de « variation macroscopique » (moyenne) n'a alors plus de sens.
Le flux d'énergie est donné par le vecteur de Poynting. Chaque photon « emporte » une quantité d'énergie déterminée, valant E = h·ν, h étant la constante de Planck et ν la fréquence. On peut ainsi calculer le flux de photons à travers une surface.