Énergie libre - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Potentiels thermodynamiques
Énergie interne U(S,V,N)
Énergie libre F(T,V,N) = UTS
Enthalpie H(S,p,N) = U + pV
Enthalpie libre G(T,p,N) = U + pVTS

L'énergie libre F (appelée aussi "'énergie libre de Helmholtz"') est, en thermodynamique, une fonction d'état extensive dont la variation permet d'obtenir le travail utile susceptible d'être fourni par un système thermodynamique fermé, à température constante. Elle correspond à l'énergie libre de Helmholtz des anglo-saxons, qui préfèrent la symboliser par la lettre A.

Cette fonction ne doit pas être confondue avec la fonction enthalpie libre G ("énergie libre de Gibbs" des anglo-saxons), qui s'applique aux systèmes évoluant à la température T et à pression constante (cas des réactions effectuées à l'air libre).

L'énergie libre est souvent utilisée dans l'étude des explosions qui induisent une variation de pression ou encore dans la calorimétrie à volume constant effectuée dans une bombe calorimétrique.

Néanmoins le rôle de la fonction F est beaucoup moins important en thermochimie que celui de la fonction enthalpie libre qui est la fonction phare, indispensable à l’étude des équilibres chimiques.

Cette fonction, qui n'est en fait rien d' autre que le logarithme de la fonction de partition, joue un rôle fondamental en physique théorique. Pour finir, elle présente bien souvent des propriétés d'automoyennage qui justifient que ce soit à elle qu'on s'intéresse dans l'étude des systèmes désordonnés.

Définition

Considérons une transformation irréversible effectuée à la température T et à volume constant. S’il n’y a pas de montage électrochimique, il n’y a pas de travail électrique. Comme V=cte, le travail des forces de pression est nul.

Donc en appliquant le premier principe :  \Delta U_{syst} =  Q_{irrev}~

Appliquons alors le second principe :  \Delta S_{creee} =  \Delta S_{syst}  +  \Delta S_{ext}  > 0~

Le système échange avec le milieu extérieur Qirrév. Si on se place du côté du milieu extérieur, celui-ci reçoit - Q(irrév) = - ΔU(syst).

Et la variation d’entropie du milieu extérieur devient égale à :

 \Delta S_{ext} = - \frac{Q_{irrev}}{T}  = - \frac{\Delta U_{syst}}{T}~

D’où :  \Delta S_{creee} =  \Delta S_{syst} - \frac{\Delta U_{syst}}{T} > 0~

Multiplions par ( - T )

 -T\Delta S_{creee} =  -T\Delta S_{syst} + \Delta U_{syst}< 0~

On définit ainsi la fonction énergie libre :

F =  U  -  TS~

Pour une transformation effectuée à T et V = cte, on obtient :

 (\Delta F_{syst})_{T,V} =   \Delta U_{syst}  - T \Delta S_{syst}  =  - T \Delta S_{creee} < 0~

Si la transformation est réversible,  \Delta S_{creee} = 0~ et ~(\Delta F_{syst})_{T,V} = 0~

En revanche, si la transformation est irréversible,  \Delta S_{creee} > 0~ et donc (\Delta F_{syst})_{T,V} < 0~

La transformation réelle à T et V = cte, ne peut s’effectuer qu’avec une diminution de l’énergie libre du système.

Relations utiles à partir de F ou de ses différentielles

  • Relation de maxwell : S= -\left(\frac{\partial F}{\partial T}\right)_V
  • Relation de Gibbs-Helmholtz : il existe une relation analogue à celle de Gibbs-Helmholtz concernant F :

\left (\frac{\partial \left ( \frac{F}{T}\right )}{\partial T}\right )_V = -\frac{U}{T^2}

  • Potentiel chimique : une "définition" du potentiel chimique peut être donnée à partir d'une différentielle partielle de F.

\mu_i =  \left (  \frac{\partial F}{\partial n_i} \right )_{V,T,n_{j\neq i}}

Différentielle de F

 F = U - TS~

dF = dU -TdS - SdT~

  • Appliquons le premier principe

dU = \delta Q + \delta W_{fp}+ \delta W' = \delta Q -pdV + \delta W'~

avec:

δWfp : travail des forces de pression

δW': travail autre, comme par exemple le travail électrique dans un montage de pile

  • Appliquons le second principe

\delta Q_{rev} = TdS~

dU s'exprime donc:
dU = TdS -pdV + \delta W' ~

d'où :

dF = -pdV - SdT + \delta W'~
  • Si la température est constante:

dF = -pdV + \delta W'~ '

  • Cas d'une transformation réelle donc irréversible

dF < -pdV + \delta W'~
\Delta F < W_{fp} + W'~

On montre bien que la variation de la fonction F est égale au travail fourni par le système si la transformation est réversible et est effectuée à T constante .

  • Si le volume est constant et le travail W' est nul:

\Delta F < 0 ~

plus précisément :

(\Delta F_{syst})_{T,V} = - T \Delta S_{creee}< 0~

La transformation réelle à T et V = cte, ne peut s’effectuer qu’avec une diminution de l’énergie libre du système. On peut donc identifier F au potentiel thermodynamique d'une transformation isotherme et isochore

Page générée en 0.207 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise