Ordre de grandeur (température) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Liste des ordres de grandeur pour la température
Facteur Multiple Exemple
10-∞ 0 K zéro absolu : les particules sont immobiles, sans interaction avec ou sans un système thermodynamique
10-15 1 fK
1 femtokelvin
ondes atomiques cohérentes sur des centimètres
particules atomiques décohérentes sur des centimètres
10-12 1 pK
1 picokelvin
100 pK, la température la plus basse jamais produite, pendant une expérience sur le magnétisme nucléaire dans le laboratoire de basses températures de l'Université Technique d'Helsinki
450 pK, la température la plus basse du condensat de Bose-Einstein jamais atteinte dans un laboratoire, au Massachusetts Institute of Technology avec du sodium sous forme gazeuse
10-9 1 nK
1 nanokelvin
50 nK, le point de fusion de Fermi du potassium-40
le point de fusion de Bose des gaz atomiques bosoniques
Réfrigérants Doppler-bloquants dans le refroidissement d'atomes par laser
10-6 1 μK
1 microkelvin
la désaimantation nucléaire, les pièges magnéto-optiques
10-3 1 mK
1 millikelvin
les excitations radio
2,5 mK, point de fusion de Fermi de l'hélium-3
triage par dilution cinétique des isotopes
démagnétisation adiabatique des molécules paramagnétiques
300 mK : évaporation froide de l'hélium-3
950 mK : point de fusion de l'hélium
excitations micro-ondes
100 1 K
1 kelvin
1 K, température de la nébuleuse du Boomerang, l'environnement naturel le plus froid connu
1,5 K, le point de fusion au-delà de l'hélium hors limite
2,19 K, point lambda de l'hélium superfluide hors limite
2,725 K, fond diffus cosmologique
4,1 K, point de supraconductivité du mercure
4,22 K, point d'ébullition de l'hélium à la pression atmosphérique
5,19 K, température critique de l'hélium
7,2 K, point de supraconductivité du plomb
9,3 K, point de supraconductivité du niobium
101 10 K point de fusion de Fermi des électrons de valence pour la supraconductivité
14,01 K, point de fusion limite de l'hydrogène
20,28 K, point d'ébullition limite de l'hydrogène
33 K, température critique de l'hydrogène
44 K, température de surface moyenne de Pluton
53 K, température de surface moyenne de Neptune
63 K, point de fusion limite de l'azote
68 K, température de surface moyenne d'Uranus
77,35 K, point d'ébullition de l'azote à la pression atmosphérique
90,19 K, point d'ébullition limite de l'oxygène
92 K, point de supraconductivité de l'Y-Ba-Cu-oxyde (YBCO)
10² 100 K excitations dans le rayonnement infrarouge
183,75 K (–89,4 °C), température aérienne de surface la plus froide enregistrée sur Terre
273,15 K (0 °C), point de fusion de l'eau
environ 293 K, température ambiante
373,15 K (100 °C), température d'ébullition limite de l'eau
Voir la liste détaillée ci-dessous
10³ 1 kK
1 kilokelvin
excitations dans le rayonnement de la lumière visible
1 170 K, grandes flammes de feu de bois
1 670 K, flamme bleue
1 808 K, point de fusion limite du fer (plus basse que l'acier)
1 870 K, flamme de bec Bunsen
1 900 K, la température de la coque de la navette spatiale américaine dans un plongeon à 8 km/s
2 013 K, point d'ébullition du plomb
3 683 K, point de fusion du tungstène
3 925 K, point de sublimation du carbone
4 160 K, point de fusion limite du carbonate d'hafnium
4 700 K, Point triple du carbone
5 780 K, surface du Soleil
5 828 K, point d'ébullition du tungstène
6 000 K, température moyenne de l'Univers 300 000 ans après le Big Bang
7 736 K, température à laquelle un gaz parfait possède une énergie cinétique d'un électron-volt
excitation dans le rayonnement ultraviolet
étincelles anioniques
104 10 kK 10 kK, surface de Sirius
10-15 kK dans la recombinaison du monoazote
25 kK, température moyenne de l'Univers 10 000 ans après le Big Bang
28 kK dans un éclair cationique enregistré sur Terre
32 kK, surface de Sirius
37 kK dans les réactions proton-électron
300 kK, température estimée à 17 mètres de Little Boy à la détonation
point d'ébullition de Fermi des électrons de valence
excitations rayons X
106 1 MK
1 mégakelvin
excitation dans le rayonnement des rayons gamma
5 MK, température de la couronne solaire
13,6 MK, température du noyau du Soleil
100 MK, température nécessaire pour une fusion nucléaire contrôlée
109 1 GK
1 gigakelvin
1 GK, température 100 secondes après le Big Bang
3 GK dans les réactions électron-positron
10 GK dans les explosions de supernova
10 GK, température 1 seconde après le Big Bang
1012 1 TK
1 térakelvin
1 TK, la matière sous forme de quarks subit une transition de phase à partir des hadrons vers un plasma de quark-gluon
3-5 TK dans les réactions proton-antiproton
excitations électronucléaire Z0
10 TK, température 100 microsecondes après le Big Bang
300–900 TK dans les collisions proton-nickel dans le Tevatron
1015 1 PK
1 pétakelvin
0.3–2.2 PK dans les collisions proton-antiproton
1018 1 EK
1 exakelvin
2–13 EK dans les collisions nucléaires lourdes dans le Large Hadron Collider
1024 1 YK
1 yottakelvin
0.5–7 YK dans les collisions avec les rayons cosmiques de ultra haute énergie
1029 1 XK excitations dans la Grande unification, température 10-35 secondes après le Big Bang
1032 1 WK 1,4x1032 K, température de Planck des micro trous noirs, température 5x10-44 secondes après le Big Bang
Page générée en 0.157 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise