En physique, une transition de phase est une transformation du système étudié provoquée par la variation d'un paramètre extérieur particulier (température, champ magnétique...).
Cette transition a lieu lorsque le paramètre atteint une valeur seuil (plancher ou plafond selon le sens de variation). La transformation est un changement des propriétés du système ; cela peut être :
Les transitions de phases ont lieu lorsque l'énergie libre d'un système n'est pas une fonction analytique (par exemple non-continue ou non-dérivable) pour certaines variables thermodynamiques. Cette non-analyticité provient du fait qu'un nombre extrêmement grand de particules interagissent ; ceci n'apparaît pas lorsque les systèmes sont trop petits.
Voici le nom des transitions de phases (ou changements d'état physique) les plus courantes qui font intervenir les états de la matière suivants : solide, liquide, gazeux :
Dans le cas de la transition entre les phases liquide et gaz, il existe des conditions de pression et de température pour lesquelles la transition entre le liquide et le gaz devient du second ordre. Près de ce point critique, le fluide est suffisamment chaud et comprimé pour que l'on ne puisse pas distinguer les phases liquides et gazeuses.
Le système a une apparence laiteuse en raison des fluctuations de la densité du milieu, qui perturbe la lumière sur tout le spectre visible. Ce phénomène est appelé opalescence critique.
On retrouve également ce type de transition dans les systèmes magnétiques.
Les phases avant et après transition ont souvent, mais pas systématiquement, des symétries différentes.
Considérons par exemple la transition entre un fluide (liquide ou gaz) et un solide cristallin. Le fluide est composé de molécules arrangées de manière désordonnée mais homogène, il possède une symétrie translationnelle continue : chaque point dans le fluide a les mêmes propriétés que n'importe quel autre point. Le solide cristallin par contre est fait d'atomes arrangés selon un réseau. Ce réseau est hétérogène et anisotrope : les propriétés varient grandement d'un point à un autre, et selon les directions considérées, mais sont périodiques.
La transition ferromagnétique est un autre exemple d'une transition brisant la symétrie ; il s'agit dans ce cas de la symétrie des courants électriques et des lignes de champ magnétique. Cette symétrie est brisée par la formation de domaines magnétiques contenant des moments magnétiques alignés. Chaque domaine a un champ magnétique pointant dans une direction fixée choisie spontanément pendant la transition de phase. On parle de « symétrie de haut et bas », ou de « symétrie d'inversion du temps » car les courants électriques inversent leur direction quand le sens du temps est inversé.
La présence ou l'absence d'une rupture de symétrie est importante pour le comportement des transitions de phase. Ceci fut noté par Landau : il n'est pas possible de trouver une fonction continue et dérivable entre des phases possédant une symétrie différente. Ceci explique qu'il n'est pas possible d'avoir un point critique pour une transition solide cristallin-fluide. Les transitions brisant une symétrie sont nécessairement du premier ou du second ordre.
En général, la phase la plus symétrique est la phase stable à haute température ; c'est par exemple le cas des transitions solide-liquide et ferromagnétique. En effet, l'Hamiltonien d'un système présente habituellement toutes les symétries possibles du système, et certaines de ces symétries sont absentes dans les états de basse énergie ; on appelle ceci la rupture spontanée de symétrie.
La rupture de la symétrie nécessite l'introduction de variables supplémentaires pour décrire l'état du système. Par exemple, dans la phase ferromagnétique, il faut pour décrire le système indiquer l'« aimantation nette » des domaines qui s'opère lors du passage sous le point de Curie. Ces variables sont des paramètres d'ordre. Cependant, les paramètres d'ordre peuvent aussi être définis pour des transitions qui ne rompent pas la symétrie.
Les transitions de phase qui brisent la symétrie jouent un rôle important en cosmologie. Dans la théorie du Big Bang, le vide (théorie du champ quantique) initial possède un grand nombre de symétries. Au cours de l'expansion de l'Univers, le vide se refroidit ce qui entraîne une série de transitions brisant des symétries. Par exemple, la transition électro-faible rompt la symétrie SU(2)×U(1) du champ électrofaible, le champ électromagnétique actuel ayant une symétrie U(1). Cette transition est importante pour comprendre l'asymétrie entre la quantité de matière et d'antimatière dans l'Univers présent (voir baryogénèse électrofaible).
Les transitions de phase continues sont plus faciles à étudier que celles de premier ordre en raison de l'absence de chaleur latente, et elles ont de nombreuses propriétés intéressantes. Le phénomène associé avec la transition de phase continue est appelé phénomène critique, en raison de son association avec les points critiques.
Les transitions de phase continues peuvent être caractérisées par des paramètres appelés exposants critiques.
Bien que la transition soit continue (et donc ne se fasse pas à température constante), on peut tout de même définir une température critique Tc.
Quand T est proche Tc, la capacité calorifique C suit typiquement une loi de puissance :
La constante α est l'exposant critique associé avec la capacité calorifique. Puisque la transition n'a pas de chaleur latente, il faut nécessairement que α soit strictement inférieur à 1 (sinon, la loi C(T) n'est plus continue). La valeur de α dépend du type de transition de phase considéré :
Quelques systèmes ne suivent pas cette loi de puissance. Par exemple, la théorie de champ moyen prédit une discontinuité finie de la capacité calorifique à la température de transition, et le modèle Ising bi-dimensionnel a une divergence logarithmique. Cependant, ces systèmes sont des modèles théoriques ; les transitions de phase observées jusqu'ici suivent toutes une loi de puissance.
On peut définir plusieurs exposants critiques - notés β, γ, δ, ν, et η - correspondant aux variations de plusieurs paramètres physiques autour du point critique.
Fait remarquable, des systèmes différents possèdent souvent le même ensemble d'exposants critiques. Ce phénomène est appelé universalité. Par exemple, dans le cas du point critique liquide-gaz, les exposants critiques sont largement indépendants de la composition chimique du fluide. Plus surprenant, les exposants critiques de la transition de phase ferromagnétique sont exactement les mêmes pour tous les aimants uniaxiaux. De tels systèmes sont dits être dans la même classe d'universalité.
L'universalité est une prédiction de la théorie de la transition de phase du groupe de renormalisation, qui indique que les propriétés thermodynamiques d'un système près de la transition dépend seulement d'un petit nombre d'éléments, comme la dimensionnalité et la symétrie, et est insensible aux propriétés sous-jacentes microscopiques du système.