En mathématiques, et plus précisément dans le cadre de la théorie des représentations d'un groupe fini, la formule de réciprocité de Frobenius établit un lien entre deux fonctions centrales d'un groupe fini G et d'un sous-groupe H de G.
Si χ1 est un caractère de H, Ind (χ1) désigne en général le caractère de la représentation induite. Réciproquement, si χ2 est un caractère de G, Res (χ2 la restriction du caractère à H. Si < | > désigne la forme hermitienne de l'espace des fonctions centrales, alors la formule de réciprocité de Frobenius exprime l'égalité suivante :
Cette formule doit son nom à Ferdinand Georg Frobenius qui établit pour la première fois l'exactitude de cette formule en 1898.
Soit G un groupe fini, H un sous-groupe de G, K un corps commutatif de caractéristique soit nulle soit première avec g l'ordre du groupe G. Si K est de caractéristique finie alors il est algébrique. Dans tous les cas le polynôme Xg - 1 est scindé sur K. Soit (W, θ) une représentation de H sur le corps K, Ind (θ) ou IndHG (θ) désigne la représentation induite de G par (W, θ), et ψ désigne le caractère de θ. Soit (V, ρ) une représentation de G sur le corps K, La restriction de cette représentation à H est notée Res (ρ) ou ResHG (ρ) et son caractère χ. La forme bilinéaire canonique des fonctions centrales, dont la définition exacte est donnée dans le paragraphe sur les caractères est notée < | >H ou < | >G selon le groupe utilisé. Ces notations sont valables pour tout l'article, elles permettent d'exprimer la propriété suivante, appelée formule de réciprocité de Frobenius :
Il est possible de généraliser la fonction IndHG à l'espace vectoriel des fonctions centrales de H de la manière suivante :
Cette définition permet de généraliser la formule de réciprocité de Frobenius :
Une autre manière d'exprimer cette propriété est la suivante :
Avec les notations précédentes:
Si l'on considère la matrice de ρt comme une matrice bloc correspondant à chaque ρtW, on remarque que seul, les blocs sur la diagonale modifient la trace. Notons Ct le sous ensemble de C des éléments c tel que ρcW soit stable par ρt, c'est-à-dire qu'ils correspondent aux matrices blocs de la diagonale. On obtient alors la formule, si Tr désigne trace :
On remarque que c est élément de Ct si et seulement si c-1tc est un élément de H et donc :
Ce qui démontre la première formule. Pour la deuxième, il suffit de remarquer que tous les représentants d'une classe à gauche d'un élément de Ct possède une matrice d'endomorphisme de la forme θ(s-1ts) dont la trace est égale à ψ(s-1ts).
Il est possible de généraliser la fonction IndHG à l'espace vectoriel des fonctions centrales de H de la manière suivante :
Cette définition permet de généraliser la formule de réciprocité de Frobenius.
Démontrons alors la formule de réciprocité de Frobenius :
Les caractères des représentations forment une base de l'espace des fonctions centrales, il suffit donc de démontrer la formule pour les caractères. En termes de G-module, l'expression devient :
Pour démontrer cette proposition remarquons que HomH (W, Res V) et HomG (Ind W, V) sont isomorphes (cf l'encart déroulant Démonstrations de l'article Représentation induite d'un groupe fini), leurs dimensions sont donc égales :
Or, ces dimensions correspondent exactement au produit scalaire des différentes représentations (cf le paragraphe Centre de l'algèbre de l'article Algèbre d'un groupe fini), ce qui termine la démonstration.