Théorème de Hille-Yosida - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Opérateurs dissipatifs

Définitions

  • Un opérateur (A,D(A)) est dissipatif si \forall x\in D(A) \text{ et } \forall \lambda >0, ~ ||x-\lambda Ax|| \geq ||x||. Dans le cas où X = H est hilbertien on montre que A est dissipatif si et seulement si \forall x\in D(A) ~ \mathfrak{Re}(<Ax,x>_H) \leq 0.

Remarque: Si (A,D(A)) est un opérateur dissipatif alors \forall \lambda > 0 l'opérateur (Id − λA) est injectif car (I-\lambda A)x = 0 \Rightarrow 0 \leq ||x|| \leq ||(I-\lambda A)x||=0 \Rightarrow x= 0 .

  • Si de plus \forall \lambda >0, ~ Id - \lambda A est surjectif on dit que (A,D(A)) est maximal-dissipatif (ou m-dissipatif). On peut montrer que \forall \lambda >0, ~ Id - \lambda A ~ \text{surjectif} \Leftrightarrow \exists \lambda_0 ~ tq ~ Id - \lambda_0 A ~ \text{surjectif}. En pratique pour montrer qu'un opérateur est m-dissipatif on montre d'abord à la main qu'il est dissipatif et on résout ensuite un problème variationnel pour une valeur λ0 bien choisie (par exemple avec le théorème de Lax-Milgram, voir exemple de l'équation de la chaleur traité plus bas).

Dans ce cas l'opérateur (Id − λA) est un isomorphisme (a priori non continu) de L(A,X) et on note Jλ = (Id − λA) − 1. De plus, comme ||J_{\lambda}y||_X \leq ||(Id-\lambda A)[J_{\lambda}y]||_X \leq ||y||_X , J_{\lambda} \in \mathcal{L}\left((X,||.||_X),(D(A),||.||_X)\right) . Nous allons voir que cette propriété de continuité peut être améliorée (on va rendre moins fine la topologie sur (D(A), | | . | | X) en munissant D(A) d'une norme | | . | | D(A)).

Propriétés des opérateurs m-dissipatifs

Prop 1: si (A,D(A)) est m-dissipatif alors c'est un opérateur fermé.

Corollaire 1: pour x \in D(A) on pose | | x | | D(A) = | | x | | X + | | Ax | | X. Alors | | . | | D(A) est une norme pour laquelle D(A) est un espace de Banach et A \in \mathcal{L}\left((D(A),||.||_A),(X,||.||_X)\right) .

Prop 2: si H est un espace Hilbertien et A : D(A) \subset H \longrightarrow H est m-dissipatif alors il est à domaine dense.

Prop 3: réciproquement si A : D(A) \subset H \longrightarrow H est de domaine dense, dissipatif, fermé et tel que son adjoint (A * ,D(A * )) est dissipatif alors (A,D(A)) est m-dissipatif.

Corollaire 3: toujours dans le cadre hilbertien

(i) si (A,D(A)) est dissipatif autoadjoint à domaine dense alors il est m-dissipatif
(ii) si (A,D(A)) est anti-adjoint à domaine dense alors il est m-dissipatif

Remarque: dans (ii) la condition de dissipativité n'est pas nécessaire car (A,D(A)) anti-adjoint entraîne que < Ax,x > H = 0 donc la dissipativité, voir l'exemple de l'équation des ondes plus bas.

Exemples

L'équation de la chaleur

On se donne Ω un ouvert borné de classe \mathcal{C}^2 de \mathbb{R}^n et on cherche à résoudre l'équation de la chaleur  \begin{cases} \partial_t u(x,t) - \triangle u(x,t)=0 \\ u(x,0) = u_0(x) \end{cases} sur (x,t)\in \Omega \times [0,+\infty] pour une condition initiale donnée. On peut réécrire cette EDP sous la forme d'une EDO y'(t) = Ay(t) en posant X = H = L2(Ω), y(t)=u(.,t)\in H et en définissant (A,D(A)) par D(A)=H^2(\Omega) \bigcap H^1_0(\Omega) \subset L^2(\Omega) et Ax=\triangle x pour tout x \in D(A) . Nous sommes dans le bon cadre pour utiliser la théorie des semi-groupes et le théorème de Hille-Yosida; reste à montrer que l'opérateur A est m-dissipatif. Il est bien connu que le laplacien est un opérateur autoadjoint (on a <Au,v>_H=\int_{\Omega}(\triangle u)v = -\int_{\Omega}\nabla u . \nabla v=\int_{\Omega}u(\triangle v ) = <u,Av>_H par double intégration par parties) et que D(A) est dense dans L2(Ω), il suffit donc de montrer qu'il est dissipatif ou de façon équivalente que \mathfrak{Re}(<Ax,x>_H) \leq 0. Or tout x \in D(A)=H^2(\Omega) \bigcap H^1_0(\Omega) est de trace nulle, donc en intégrant par parties \mathfrak{Re}(<Ax,x>_H)=-\int_{\Omega}||\nabla x||^2_{\mathbb{R}^n} \leq 0. Le corollaire 3 et le théorème de Hille-Yosida permettent enfin de conclure quant à l'existence-unicité et la régularité des solutions. Remarquer que \frac{d}{dt}\left(||y(t)||^2_H\right)=2<y'(t),y(t)>_H=2<Ay(t),y(t)>_H \leq 0: on retrouve bien sur le côté dissipatif et irréversible de l'équation de la chaleur.

L'équation des ondes

L'équation des ondes homogène se formule dans un domaine Ω suffisamment régulier (c'est-à-dire \mathcal{C}^2 en pratique) et sur un intervalle de temps [0,T) (avec T > 0) selon

\left\{\begin{array}{rcll}u_{tt}(t,x) -\Delta u(t,x) & = & 0 & (0,T) \times \Omega\\ u(0,x) & = & f(x) & \Omega\\ u_{t}(0,x) & = & g(x) & \Omega \end{array}\right.

On se place dans la théorie des semi-groupes en mettant l'équation précédente au premier ordre en temps. On pose alors \mathcal{A} = \left(\begin{array}{cc} 0 & I \\ \Delta & 0 \end{array}\right) , \mathcal{Y} = \left(\begin{array}{c} u \\ v \end{array}\right) (avec v = u' ) et  \mathcal{Y}_0 = \left(\begin{array}{c} f \\ g \end{array}\right) l'équation devient alors \left\{\begin{array}{rcll} \mathcal{Y}'(t) & = & \mathcal{A}\mathcal{Y}(t) \\ \mathcal{Y}(0) & = & \mathcal{Y}_0 \end{array}\right. .

Le domaine du Laplacien étant D(\Delta) = H^2(\Omega) \cap H_0^1(\Omega) , celui de \mathcal{A} est D(\mathcal{A}) = H^2(\Omega) \cap H_0^1(\Omega) \times H_0^1(\Omega) sur  H = H_0^1(\Omega) \times L^2(\Omega) . Les conditions initiales seront alors prises dans H. Le produit scalaire dans H est défini pour tout couple (u,v) dans H (u = (u1,u2) et v = (v1,v2)) par  (u,v)_H = (\nabla u_1,\nabla v_1)_{L^2(\Omega)} + (u_2,v_2)_{L^2(\Omega)}.


Reste à vérifier que nous sommes bien dans les conditions d'application du théorème de Hille-Yosida :

  1. D(\mathcal{A}) est dense dans H.
  2. \mathcal{A} est fermé.
  3. \mathcal{A} est dissipatif. Ce point mérite une preuve.

Preuve 1. On utilise la caractérisation (i') du théorème. Soient λ > 0 et (f,g) \in H . L'équation résolvante s'écrit en (u,v)

(*)\left\{ \begin{array}{rcl} \lambda u - v & = & f \\ \lambda v - \Delta u & = & g \end{array} \right. d'où 2I − Δ)u = λf + g qui admet une unique solution dans u \in H^1_0(\Omega) via Lax-Milgram (car d'une part λ2 > 0 et d'autre part les valeurs propres du Laplacien sont strictement négatives donc 2I − Δ) est un opérateur elliptique dont la forme bilinéaire associée vérifie les hypothèses du théorème de Lax-Milgram). Et alors v = λuf est dans  H_0^1(\Omega) .

L'estimation de l'opérateur résolvant Rλ vient du produit scalaire de ( * )2 par v en remplaçant u par sa valeur dans ( * )1:

 \begin{array}{rcl} \lambda (\|v\|_{L^2(\Omega)} + \|\nabla u\|_{L^2(\Omega)}) & = &  ( \nabla f,\nabla u)_{L^2(\Omega)} + (g, v)_{L^2(\Omega)} \\ & \leq & (\|g\|_{L^2(\Omega)}^2 + \|\nabla f\|_{L^2(\Omega)}^2)^{1/2}(\|v\|_{L^2(\Omega)}^2+\|\nabla u\|_{L^2(\Omega)}^2)^{1/2}. \end{array}

D'où, puisque (u,v) = Rλ(f,g), on obtient l'estimation attendue \|R_\lambda\| \leq \frac{1}{\lambda} . Le semi-groupe engendré par \mathcal{A} est donc un semi-groupe de contraction.

Preuve 2. On peut utiliser le Corollaire 3 pour montrer que  \mathcal{A} est m-dissipatif en montrant que  \mathcal{A} est anti-adjoint. On a alors pour tout couple (u,v) dans D(\mathcal{A})

  \begin{array}{rcl} (\mathcal{A}u,v)_H & = & (\nabla u_2,\nabla v_1)_{L^2(\Omega)} + (\Delta u_1,v_2)_{L^2(\Omega)} \\  & = & -(u_2,\Delta v_1)_{L^2(\Omega)} - (\nabla u_1,\nabla v_2)_{L^2(\Omega)} \\  & = & -(u,\mathcal{A}v)_H. \end{array}

Ainsi, \mathcal{A} est anti-adjoint et à domaine dense donc m-dissipatif.

Page générée en 0.116 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise