Constantes mathématiques (représentées en fraction continuée)
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Voici une table de constantes mathématiques exprimées par leurs notations et par leurs représentations en fraction continuée :

(Constantes connues comme étant irrationnelles avec un développement en fraction continuée infini : leur dernier terme est ....)

Nom Ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut...) de nombres Définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) ou valeur approchée Représentations en fraction continuée
Λ

 

> – 2,7 · 10-9

 

0\,\!

\mathbb{N}

0\,\!

[0;]\,\!
1/2

\mathbb{Q}

1/2\,\!

[0; 2]\,\!
C2

 

C_2 = \prod_{p\ge 3} \frac{p(p-2)}{(p-1)^2}
C_2= [0; 1, 1, 1, 16, 2, 2, 2, 2, 1, 18, 2, 2, 11, 1, 1, 2, 4, 1, 16, 3, 2, 4, 21, 2, 405, 2, 1, 33, 1, 1] = 0 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}
γ

 

\gamma = \lim_{n \rightarrow \infty } \left( 1+ \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ... + \frac{1}{n} - \ln(n) \right) où ln représente le logarithme (En mathématiques, une fonction logarithme est une fonction définie sur à valeurs dans , continue et transformant un produit en somme. Le logarithme de base a où a est un réel strictement positif...) népérien.
\gamma = [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, 7, 1, 7, 1, 1, 5, 1, 49, ...] = 0 + \frac{1}{1 + \frac{1}{1 + \frac{2}{1 + \cdots}}}
β*

 

x_{n+1} = x_n \pm \beta x_{n-1}\,\! dégénère exponentiellement quand n \rightarrow \infty\,\! avec une probabilité (La probabilité (du latin probabilitas) est une évaluation du caractère probable d'un évènement. En mathématiques, l'étude des probabilités est un sujet...) 1.
\beta^{*} = [0; 1, 2, 2, 1, 3, 5, 1, 2, 6, 1, 1, 5] = 0 + \frac{1}{1 + \frac{2}{1 + \frac{2}{1 + \cdots}}}
K

\mathbb{R}\backslash\mathbb{Q}?

\lim_{x\rightarrow\infty} \frac{N(x)\sqrt{\ln(x)}}{x}N(x) est le nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) d'entiers positifs inférieurs à x qui sont la somme de deux carrés.
K = [0; 1, 3, 4, 6, 1, 15, 1, 2, 2, 3, 1, 23, 3, 1, 1, 3, 1, 1, 7, 2, 3, 3, 18, 2, 1, 2, 1, 2, 1, 6] = 0 + \frac{1}{1 + \frac{3}{1 + \frac{4}{1 + \cdots}}}
B4

 

B_4 = \left(\frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13}\right) + \left(\frac{1}{11} + \frac{1}{13} + \frac{1}{17} + \frac{1}{19}\right) + \left(\frac{1}{101} + \frac{1}{103} + \frac{1}{107} + \frac{1}{109}\right) + \cdots
B_4 = [0; 1, 6, 1, 2, 1, 2, 956, 8, 1, 1, 1, 23] = 0 + \frac{1}{1 + \frac{6}{1 + \frac{1}{1 + \cdots}}}
K

 

K = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + ...
K = [0; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, 9, 3, 1, 1, 1, 1, 1, 1, 2, 2] = 0 + \frac{1}{1 + \frac{10}{1 + \frac{1}{1 + \cdots}}}
M1

 

M = \lim_{n \rightarrow \infty } \left(  \sum_{p \leq n} \frac{1}{p}  - \ln(\ln(n)) \right)=\gamma + \sum_{p} \left[ \ln \left( 1 - \frac{1}{p} \right) + \frac{1}{p} \right]
M_1= [0; 3, 1, 4, 1, 2, 5, 2, 1, 1, 1, 1, 13, 4, 2, 4, 2, 1, 33, 296, 2, 1, 5, 19, 1, 5, 1, 1, 1, 1, 1] = 0 + \frac{3}{1 + \frac{1}{1 + \frac{4}{1 + \cdots}}}

1\,\!

\mathbb{N}

1\,\!

[1;]
Nombre d'or (phi)

\overline{\mathbb{Q}}

\phi = \frac{\sqrt{5} + 1}{2}
\phi = [1; 1, 1, 1, ...] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}
EB

 

E=\sum_{n=1}^{\infty}\frac{1}{2^n-1}

E_B = [1; 1, 1, 1, 1, 5, 2, 1, 2, 29, 4, 1, 2, 2, 2, 2, 6, 1, 7, 1, 6, 2, 1, 1, 1, 20, 1, 3, 1, 1, 1, ...] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}
B2

 

B_2 = \left(\frac{1}{3} + \frac{1}{5}\right) + \left(\frac{1}{5} + \frac{1}{7}\right) + \left(\frac{1}{11} + \frac{1}{13}\right) + \left(\frac{1}{17} + \frac{1}{19}\right) + \left(\frac{1}{29} + \frac{1}{31}\right) + \cdots
B_2 = [1; 1, 9, 4, 1, 1, 8, 3, 4, 7, 1, 3, 3, 1, 2, 1, 1, 12, 4, 2, 1, 2, 2] = 1 + \frac{1}{1 + \frac{9}{1 + \frac{4}{1 + \cdots}}}
K

 

\sqrt[n]{|f_n|} \to 1,13198824\dots \mbox{quand }n \to \infty. où fn est une suite de Fibonacci (Leonardo Fibonacci (Pise, v. 1170 - v. 1250) est un mathématicien italien. Fibonacci (de son nom moderne), connu à l'époque sous le nom de Leonardo Pisano (Léonard de Pise), mais aussi de Leonardo Bigollo (bigollo signifiant voyageur),...) aléatoire
K = [1; 7, 1, 1, 2, 1, 3, 2, 1, 2, 1, 17, 1, 1, 2, 1, 2, 4, 1, 2] = 1 + \frac{7}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}
√2

\mathbb{R}\backslash\mathbb{Q}

\sqrt{2}\,\!
\sqrt{2} = [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...] = 1 + \frac{2}{1 + \frac{2}{1 + \frac{2}{1 + \cdots}}}
μ

 

Unique zéro (Le chiffre zéro (de l’italien zero, dérivé de l’arabe sifr, d’abord transcrit zefiro en italien) est un symbole marquant une position vide dans l’écriture des nombres en notation...) positif de la fonction

{\rm li} (x) = \int_{0}^{x} \frac{dt}{\ln (t)} \; .
\mu = [1; 2, 4, 1, 1, 1, 3, 1, 1, 1, 2, 47, 2, 4, 1, 12, 1, 1, 2, 2, 1, 7, 2, 1, 1, 1, 2, 30, 6, 3, 6] = 1 + \frac{2}{1 + \frac{4}{1 + \frac{1}{1 + \cdots}}}

2\,\!

\mathbb{N}

2\,\!

[2;]\,\!
α

 

≈ 2,502 907 875 095 892 822 283 902 873 218 215 78

\alpha = [2; 1, 1, 85, 2, 8, 1, 10, 16, 3, 8, 9, 2, 1, 40, 1, 2, 3, 2, 2, 1, 17, 1, 1, 5, 3, 2, 6, 3, 5, 1] = 2 + \frac{1}{1 + \frac{1}{1 + \frac{85}{1 + \cdots}}}
e

 

e = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n
e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, ...] = 2 + \frac{1}{1 + \frac{2}{1 + \frac{1}{1 + \cdots}}}
Kh

 

Pour :x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + ...}}}, il est presque toujours vrai que

\lim_{n \rightarrow \infty } \left( \prod_{i=1}^n a_i \right) ^{1/n} = K \approx 2,6854520010\dots
K_h = [2; 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, 1, 1, 90] = 2 + \frac{1}{1 + \frac{2}{1 + \frac{5}{1 + \cdots}}}

3

\mathbb{N}

3\,\!

[3;]\,\!
π

 

  • Produit de Wallis :
\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2}
\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, ...] = 3 + \frac{7}{1 + \frac{15}{1 + \frac{1}{1 + \cdots}}}

4

\mathbb{N}

4\,\!

[4;]\,\!
δ

 

≈ 4,669 201 609 102 990 671 853 203 820 466 201 61

\delta = [4; 1, 2, 43, 2, 163, 2, 3, 1, 1, 2, 5, 1, 2, 3, 80, 2, 5, 2, 1, 1, 1, 33, 1, 1, 53, 1, 1, 1, 1, 1] = 4 + \frac{1}{1 + \frac{2}{1 + \frac{43}{1 + \cdots}}}
Page générée en 0.065 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique