Champ profond de Hubble Sud - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Observations

La stratégie d'observation pour HDF-S était similaire à celle de HDF-N, avec les mêmes filtres optiques utilisés pour les images de la caméra WFPC2 (isolant les longueurs d'ondes de 300, 450, 606 et 814 nanomètres, et des temps d'expositions totaux similaires. Les expositions se sont succédé pendant dix jours entre septembre et octobre 1998 à l'occasion d'un total de 150 orbites. Pendant que WFPC2 prenait des images optiques très profondes, les champs étaient simultanément imagés par les instruments STIS et NICMOS. Un certain nombre de champs voisins furent aussi observés pendant des périodes plus courtes.

Les images de WFPC2 mesuraient 5,3 arcminutes carrées alors que celles de NICMOS et STIS ne mesuraient que 0,7 arcminutes carrées.

Observations du HDF-S avec le HST.
Camera Filtre Longueur d'onde Temps d'exposition total Nombre de prises de vues
EN:WFPC2 F300W 300 nm (U-band) 140 400 s 106
WFPC2 F450W 450 nm (B-band) 103 500 s 67
WFPC2 F606W 606 nm (V-band) 99 300 s 53
WFPC2 F814W 814 nm (I-band) 113 900 s 57
EN:NICMOS NIC3 F110W 110 nm (J-band) 162 600 s 142
NICMOS NIC3 F160W 160 nm (H-band) 171,200 s 150
NICMOS NIC3 F222M 222 mm (K-band) 105,000 s 102
EN:STIS 50CCD 350–950 nm 155 600 s 67
STIS F28X50LP 550–960 nm 49 800 s 64
STIS MIRFUV 150–170 nm 52 100 s 25
STIS MIRNUV 160–320 nm 22 600 s 12
Spectroscopie G430M 302.2–356.6 nm 57 100 s 61
Spectroscopie G140L 115–173 nm 18 500 s 8
Spectroscopie E230M 227.8–312 nm 151 100 s 69
Spectroscopie G230L 157–318 nm 18 400 s 12

Comme pour le HDF-N, les images étaient traitées en utilisant une technique appelée drizzling photometry avec laquelle le pointage du télescope est très peu modifié entre chaque pose, et les images résultantes sont combinées par l'utilisation de techniques sophistiquées. Ceci permet d'obtenir une résolution angulaire supérieure à celle qu'il aurait été possible d'obtenir autrement. Les mouvements de translation du télescope se déroulèrent convenablement durant la période des prises de vue. Cependant, durant les travaux de spectroscopie, la position du télescope a du être modifiée par des rotations de faible importance, au lieu d'être repointé de façon que le centre de l'instrument STIS soit conservé sur le centre d'un quasar. L'image finale du HDF-S a une échelle de pixels de 0,0398 arcsecondes.

Poursuite des observations

À la suite des observations du HDF-S, le champ a également été étudié dans les gammes de fréquences UV/optiques/infrarouge, par l'observatoire anglo-australien (AAO), l'Observatoire inter-américain du Cerro-Tololo et l'Observatoire européen austral (ESO). Dans les infrarouges moyens, il a été étudié par l'observatoire ISO (Infrared Space Observatory), et les observations radio furent réalisées à l'aide du Australia Telescope National Facility

Résultats scientifiques

Comme pour le HDF-N, l'imagerie du HDF-S a fourni une riche récolte aux cosmologistes. De nombreuses études du HDF-S ont confirmé les résultats obtenus sur le champ Nord, tels que le taux de formation des étoiles au long de la durée de vie de l'univers. Le HDF-S a également été énormément utilisé dans les études sur l'évolution des galaxies avec le temps, que ce soit à la suite de processus internes, ou à l'occasion des rencontres avec d'autres galaxies.

Page générée en 0.091 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise