The study of vibration in bikes includes its causes, such as engine balance, wheel balance, ground surface, and aerodynamics; its transmission and absorption; and its effects on the bike, the rider, and safety. An important factor in any vibration analysis is a comparison of the natural frequencies of the system with the possible driving frequencies of the vibration sources. A close match means mechanical resonance that can result in large amplitudes. A challenge in vibration damping is to create compliance in certain directions (vertically) without sacrificing frame rigidity needed for power transmission and handling (torsionally). Another issue with vibration for the bike is the possibility of failure due to material fatigue
Effects of vibration on riders include discomfort, loss of efficiency, Hand-Arm Vibration Syndrome, a secondary form Raynaud's disease, and whole body vibration. Vibrating instruments may be inaccurate or difficult to read.
The primary cause of vibrations in a properly functioning bicycle is the surface over which it rolls. In addition to pneumatic tires and traditional bicycle suspensions, a variety of techniques have been developed to damp vibrations before they reach the rider. These include materials, such as carbon fiber, either in the whole frame or just key components such as the front fork, seatpost, or handlebars; tube shapes, such as curved seat stays; and special inserts, such as Zertz by Specialized, and Buzzkills by Bontrager.
In addition to the road surface, vibrations in a motorcycle can be caused by the engine and wheels, if unbalanced. Manufacturers employ a variety of technologies to reduce or damp these vibrations, such as engine balance shafts, rubber engine mounts, and tire weights. The problems that vibration causes have also spawned an industry of after-market parts and systems designed to reduce it. Add-ons include handlebar weights, isolated foot pegs, and engine contrepoids.
At high speeds, motorcycles and their riders may also experience aerodynamic flutter or buffeting. This can be abated by changing the air flow over key parts, such as the windshield.
Most of the braking force of standard upright bikes comes from the front wheel. If the brakes themselves are strong enough, the rear wheel is easy to skid, while the front wheel often can generate enough stopping force to flip the rider and bike over the front wheel. This is called a stoppie if the rear wheel is lifted but the bike does not flip, or an endo (abbreviated form of end-over-end) if the bike flips. Long or low bikes, however, such as cruiser motorcycles and recumbent bicycles, can also skid the front tire, causing a loss of balance.
Mechanical analysis, with Euler's second law, of the forces generated by a bike with a wheelbase L and a center of mass at height h and halfway between the wheels, with both wheels locked, reveals that the normal (vertical) forces at the wheels are:
while the frictional (horizontal) forces are simply Fr = μNr for the rear wheel and Ff = μNf for the front wheel, where μ is the coefficient of friction, m is the mass, and g is the acceleration of gravity. Therefore, if
then the normal force of the rear wheel will be zero (at which point the equation no longer applies) and the bike will begin to flip forward over the front wheel. This phenomenon is known as load transfer or weight transfer, depending on the author.
The coefficient of friction of rubber on dry asphalt is between 0.5 and 0.8. Using the lower value of 0.5, and assuming the center of mass height is greater than or equal to the wheelbase, the front wheel can generate enough stopping force to flip the bike and rider forward over the front wheel.
On the other hand, if the center of mass height is less than half the wheelbase and at least halfway towards the rear wheel, as is true, for example on a tandem or a long-wheel-base recumbent, then, even if the coefficient of friction is 1.0, it is impossible for the front wheel to generate enough braking force to flip the bike. It will skid unless it hits some fixed obstacle, such as a curb.
In the case of a front suspension, especially telescoping fork tubes, this increase in downward force on the front end may cause the suspension to compress and the front end to lower. This is known as brake diving. A riding technique that takes advantage of how braking increases the downward force on the front wheel is known as trail braking.
The limiting factors on the maximum deceleration in front wheel braking are:
For an upright bicycle on dry asphalt with excellent brakes, pitching will probably be the limiting factor. The combined center of mass of a typical upright bicycle and rider will be about Modèle:Cm to in back from the front wheel contact patch and Modèle:Cm to in above, allowing a maximum deceleration of 0,5 g (4,9 m/s² or 16 ft/s²). If the rider modulates the brakes properly, however, pitching can be avoided. If the rider moves his weight back and down, even larger decelerations are possible.
Front brakes on many inexpensive bikes are not strong enough so, on the road, they are the limiting factor. Cheap cantilever brakes, especially with "power modulators", and Raleigh-style side-pull brakes severely restrict the stopping force. In wet conditions they are even less effective.
Front wheel slides are more common off-road. Mud, water, and loose stones reduce the friction between the tire and trail, although knobby tires can mitigate this effect by grabbing the surface irregularities. Front wheel slides are also common on corners, whether on road or off. Centripetal acceleration adds to the forces on the tire-ground contact, and when the friction force is exceeded the wheel slides.
Of course, the angle of the terrain can influence all of the calculations above. All else remaining equal, the risk of pitching over the front end is reduced when riding up hill and increased when riding down hill.
The rear brake of a upright bicycle can only produce about 0.1 g deceleration at best, because of the decrease in normal force at the rear wheel as described above. All bikes with only rear braking are subject to this limitation: for example, bikes with only a Freins à rétropédalage, and fixed-gear bikes with no other braking mechanism.