Indices de Miller et indices de direction - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Espace réciproque et diffraction

Considérons l'espace réciproque, c'est-à-dire l'espace vectoriel formé par les vecteurs d'onde ; l'utilisation de cet espace permet de déterminer facilement les conditions de diffraction (voir aussi l'article Théorie de la diffraction sur un cristal).

On y définit la base réciproque (\vec{e}^*_1, \vec{e}^*_2, \vec{e}^*_3) par :

\vec{e^*_1} = \frac{1}{V} \cdot \vec{e}_2 \wedge \vec{e}_3
\vec{e^*_2} = \frac{1}{V} \cdot \vec{e}_3 \wedge \vec{e}_1
\vec{e^*_3} = \frac{1}{V} \cdot \vec{e}_1 \wedge \vec{e}_2

V est le volume de la maille (\vec{e_1},\vec{e_2},\vec{e_3}) qui peut s'écrire :

V = \vec{e_1} \cdot (\vec{e_2} \wedge \vec{e_3}) = \vec{e_3} \cdot (\vec{e_1} \wedge \vec{e_2}) = \vec{e_2} \cdot (\vec{e_3} \wedge \vec{e_1})

D'après les propriétés du produit vectoriel, on a :

\vec{e_1^*} \cdot \vec{e_2} = \vec{e_1^*} \cdot \vec{e_3} = 0 , soit \vec{e_1^*} \bot \vec{e_2} et \vec{e_1^*} \bot \vec{e_3}
\vec{e_2^*} \cdot \vec{e_3} = \vec{e_2^*} \cdot \vec{e_1} = 0 , soit \vec{e_2^*} \bot \vec{e_3} et \vec{e_2^*} \bot \vec{e_1}
\vec{e_3^*} \cdot \vec{e_1} = \vec{e_3^*} \cdot \vec{e_2} = 0 , soit \vec{e_3^*} \bot \vec{e_1} et

Par ailleurs, si (m, n, p) est une permutation circulaire de (1, 2, 3), on a :

\vec{e_m} \cdot \vec{e_m^*} = \frac{1}{V} \cdot (\vec{e_m}\cdot \vec{e_n} \wedge \vec{e_p}) = 1

Notons \vec{K} le vecteur ayant les coordonnées (h, k, l) dans cette base réciproque :

\vec{K} = h \cdot \vec{e^*_1} + k \cdot \vec{e^*_2} + l \cdot \vec{e^*_3}

alors ce vecteur est normal au plan (hkl) : si ni h, ni k, ni l ne sont nuls, alors

\vec{K} \cdot \overrightarrow{A_1 A_2} = (h \cdot \vec{e^*_1} + k \cdot \vec{e^*_2} + l \cdot \vec{e^*_3}) \cdot \left ( -\frac{1}{h} \cdot \vec{e_1} + \frac{1}{k} \cdot \vec{e_2} \right )

soit

\vec{K} \cdot \overrightarrow{A_1 A_2} = -\vec{e^*_1} \cdot \vec{e_1} + \frac{h}{k} \cdot \vec{e^*_1} \cdot \vec{e_2} -\frac{k}{h} \cdot \vec{e^*_2} \cdot \vec{e_1} + \vec{e^*_2} \cdot \vec{e_2} - \frac{l}{h} \cdot \vec{e^*_3} \cdot \vec{e_1} + \frac{l}{k} \cdot \vec{e^*_3} \cdot \vec{e_2}

donc

\vec{K} \cdot \overrightarrow{A_1 A_2} = -1 + 0 - 0 + 1 - 0 + 0 = 0

donc \vec{K} \bot \overrightarrow{A_1 A_2} . On peut démontrer de même que \vec{K} \bot \overrightarrow{A_2 A_3} et que \vec{K} \bot \overrightarrow{A_3 A_1} . Le \vec{K} est perpendiculaire à deux vecteurs non colinéaires du plan, il est donc normal au plan. Si h, k ou l est nul, on montre l'orthogonalité en se basant sur le fait qu'un ou deux des axes est parallèle au plan.

Or, les vecteurs ayant des coordonnées entières dans la base réciproque correspondent aux conditions de diffraction. Ainsi :

  • dans le cas de la diffraction sur un monocristal (cliché de Laue, microscopie électronique en transmission), on peut associer une tache de diffraction à un plan cristallographique ;
  • dans le cas d'une poudre (chambre de Debye-Scherrer, diffractomètre Bragg-Brentano), on peut associer un anneau de Debye ou un pic de diffraction à un plan cristallographique.

On parle ainsi de tache, d'anneau ou de pic (hkl). Cette association s'appelle « l'indexation ».

Page générée en 0.092 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise