Les indices de Miller sont une manière de désigner les plans dans un cristal. On utilise des indices similaires pour désigner les directions dans un cristal, les indices de direction.
Un cristal est un empilement ordonné d'atomes, d'ions ou de molécules, appelés ci-après « motifs ». La périodicité du motif est exprimée par un réseau constitué de nœuds qui représentent les sommets de la maille. Les plans et directions sont qualifiés de « nodaux » (plan nodal, direction nodale) ou mieux encore « réticulaire ». Une direction réticulaire est dite rangée.
En métallurgie, on travaille fréquemment avec des cristaux constitués d'un seul type d'atomes ; on parle donc de « plan atomique », de « direction atomique » ou de « rangée d'atomes », mais ce ne sont que des cas particuliers.
Les arêtes de la maille conventionnelle définissent les vecteurs de la base.
Le cristal n'est pas isotrope, il n'y a pas de raison que ses propriétés le soient. Les lignes et plans de grande densité vont présenter des propriétés particulières :
Considérons le plan le plus proche de l'origine mais qui ne passe pas par l'origine. Si l'on prend l'intersection de ce plan avec les trois axes, on obtient les trois coordonnées de trois points :
alors l'inverse des coordonnées des intersections donne les indices de Miller, avec la convention 1/∞ = 0 (l'indice est 0 si l'axe est parallèle au plan). Ces indices sont notés entre parenthèse (hkl ) :
Si ni h, ni k, ni l ne sont nuls, alors le plan passe donc par les points A1 (1/h,0,0), A2 (0,1/k,0), A3 (0,0,1/l ), donc les vecteurs suivants sont dans le plan :
Ces vecteurs n'étant pas colinéaires, deux de ces vecteurs forment une base du plan.
Si un des indices est nul, alors un des vecteurs de la base de la maille est aussi un vecteur du plan, celui dont la composante non nulle est l'indice nul du plan :
Si la base est orthonormale, le produit scalaire du vecteur [hkl ] avec ces vecteurs est nul :
Donc dans le cas d'un réseau cubique, le vecteur [hkl ] est perpendiculaire à la surface, c'en est un vecteur normal. Dans le cas général, il faut changer de base pour que le vecteur de coordonnées (h, k, l ) soit perpendiculaire au plan (cf. ).