Lagrangien - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Lagrangiens et densités de lagrangien dans la théorie des champs

Dans la théorie des champs, on distingue parfois le lagrangien L, dont l'intégrale sur le temps est l'action :

S = \int{L \, dt}

et la densité lagrangienne \mathcal{L} , qu'on intègre sur tout l'espace pour obtenir l'action :

S [\varphi_i] = \int{\mathcal{L} [\varphi_i (x)]\, d^4x}

Le lagrangien est ainsi l'intégrale spatiale de la densité lagrangienne. Cependant, on appelle souvent \mathcal{L} simplement le lagrangien, surtout dans l'usage moderne. C'est plus simple dans les théories relativistes où l'espace est défini localement. Ces deux types de lagrangiens peuvent être vus comme des cas particuliers d'une formule plus générale, selon qu'on introduit la variable spatiale \vec x dans les index i ou dans les paramètres s pour écrire \varphi_i(s) . Les théories quantiques des champs en physique des particules, comme l'électrodynamique quantique, sont généralement écrites en termes de densités de lagrangiens \mathcal{L} , ces termes se transformant facilement pour donner les règles permettant d'évaluer les diagrammes de Feynman.

Formalisme mathématique

Soit M une variété de dimension n, et une variété de destination T. Soit \mathcal{C} l'espace de configuration de la fonction continue s de M dans T.

Avant tout donnons quelques exemples :

  • En mécanique classique, dans le formalisme d'Hamilton, M est le variété de dimension 1 \mathbb{R} , qui représente le temps, et l'espace de destination est le fibré cotangent de l'espace des positions généralisées.
  • Dans la théorie des champs, M est la variété espace-temps et l'espace de destination est l'ensemble des valeurs possibles des champs en chaque point. Si par exemple il y a m champs scalaires réels φ1,...,φm, alors la variété de destination est \mathbb{R}^m . Si on a un champ de vecteurs réels, la variété de destination est isomorphe à \mathbb{R}^n . Il y a en fait une manière plus élégante d'utiliser le fibré tangent, mais on s'en tiendra à cette version.

Supposons maintenant qu'il existe une fonctionnelle S:\mathcal{C}\rightarrow\mathbb{R} , qu'on appelle l'action physique. C'est une application vers \mathbb{R} , et non vers \mathbb{C} , pour des raisons physiques.

Pour que l'action soit locale, nous avons besoin de restrictions supplémentaires sur l'action. Si \varphi\in\mathcal{C} , on impose que S[φ] soit l'intégrale sur M d'une fonction de φ, de ses dérivées et des positions qu'on appelle le lagrangien \mathcal{L}(\varphi,\partial\varphi,\partial\partial\varphi, ...,x) . En d'autres termes,

\forall\varphi\in\mathcal{C}\, S[\varphi]\equiv\int_M d^nx \mathcal{L}(\varphi(x),\partial\varphi(x),\partial\partial\varphi(x), ...,x).

La plupart du temps, on impose que le lagrangien dépende uniquement de la valeur des champs, de leur dérivées premières, mais pas des dérivées d'ordre supérieur. C'est en fait seulement par commodité, et ce n'est pas vrai en général. Nous le supposons cependant dans le reste de cet article.

Fixons des conditions aux limites, essentiellement la donnée de φ aux frontières si M est compact, ou une limite pour φ quand x tend vers l'infini (ce qui est pratique lors d'intégrations par parties). Le sous-espace de \mathcal{C} des fonctions φ telles que toutes les dérivées fonctionnelles de l'action S en φ soient 0 et que φ satisfasse aux conditions aux limites, est l'espace des solutions physiques.

La solution est donnée par les équations d'Euler-Lagrange (en utilisant les conditions aux limites) :

\frac{\delta}{\delta\varphi}S=-\partial_\mu  \left(\frac{\partial\mathcal{L}}{\partial(\partial_\mu\varphi)}\right)+ \frac{\partial\mathcal{L}}{\partial\varphi}=0.

On retrouve la dérivée fonctionnnelle par rapport à φ de l'action dans le membre de gauche.

Lagrangiens en théorie quantique des champs

Le lagrangien de Dirac

La densité lagrangienne pour un champ de Dirac est:

 \mathcal{L} = \bar \psi (i \hbar c \not\!D - mc^2) \psi

ψ est un spineur,  \bar \psi = \psi^\dagger \gamma^0 est son adjoint de Dirac, D est la dérivée covariante de jauge, et \not\!D est la notation de Feynman pour γσDσ.

Le lagrangien de l'électrodynamique quantique

La densité lagrangienne en QED est:

 \mathcal{L}_{\mathrm{QED}} = \bar \psi (i \hbar c\not\!D - mc^2) \psi - {1 \over 4\mu_0} F_{\mu \nu} F^{\mu \nu}

Fμν est le tenseur électromagnétique.

Le lagrangien de la chromodynamique quantique

La densité lagrangienne en QCD est [1] [2] [3]

 \mathcal{L}_{\mathrm{QCD}} = \sum_n \bar \psi_n (i \hbar c\not\!D - m_n c^2) \psi_n - {1\over 4} G^\alpha {}_{\mu\nu} G_\alpha {}^{\mu\nu}

D est la dérivée covariante de jauge en QCD, et Gαμν est le tenseur de la force du champ du gluon.

Page générée en 0.669 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise