Nano-informatique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Des composants nanométriques à l’auto-organisation de systèmes moléculaires complexes

Les premiers composants nanométriques (c'est-à-dire à l’échelle de la molécule, là où opèrent les phénomènes quantiques) ont déjà vu le jour dans nos laboratoires. Conscients du caractère absolument vital de cette technologie, les grands opérateurs de la filière du silicium (Intel, IBM,...) figurent parmi les grands pionniers du domaine. Ils explorent notamment les filières des nanotubes de carbone.

Mais ce qui est réalisable sur les bancs d’essais des laboratoires à l’échelle unitaire, est encore loin d’être applicable dans le cadre de circuits complexes et encore moins, dans la perspective d’une production industrielle. La principale raison est la difficulté d’intégration de plusieurs centaines de millions de ces dispositifs au sein d’une même puce, à l’instar de nos microprocesseurs actuels (rappelons qu’à l’horizon 2015, ce sont 15 milliards de transistors qu’il conviendra alors d’intégrer sur une même puce).

La nanotechnologie au sens historique du terme, ne consiste pas simplement à réaliser des objets aux dimensions moléculaires. L’idée fondamentale emprunte aux sciences du vivant le principe de l’auto-organisation en systèmes complexes. C'est-à-dire des briques élémentaires qui en fonction de la destination du dispositif, sont capable de s’assembler d’elles-mêmes sous la forme d’un dispositif plus complexe à partir d’une simple consigne macroscopique externe. C’est là le principal défi et la source des débats polémiques qui alimentent la scène scientifique et technique à ce jour.

Puisque la nature peut construire de telles machines et que la biologie moléculaire et le génie génétique ont déjà exploré ces principes, une autre voie s’ouvre également pour les ordinateurs du futur : celle de l’électronique moléculaire organique qui exploite un matériau vivant tel qu’une protéine par exemple, et la réutilise dans un environnement artificiel, pour assurer une fonction de calcul ou une fonction de mémoire par exemple.

Transistor FET à nanotubes de carbone (CNFET)

Le transistor à effet de champ à nanotube (CNFET ou « Carbon Nanotube Field Effect Transistor ») utilise un nanotube de type semi-conducteur en tant que canal, à travers lequel les électrons peuvent circuler d’une manière contrôlée, selon que l’on applique ou non, une différence de potentiel sur une troisième électrode.

Le courant de commande appliquée sur l’électrode gate permet par exemple, de faire varier la conductivité du canal source-drain par un facteur million et même plus, tel que le fait un transistor FET conventionnel issu de la filière silicium.

Circuits électroniques mono-moléculaires hybrides

Ces dispositifs n'utilisent qu'une seule molécule ou un nombre très faible par composant. Il s’agit d'un procédé hybride, car le circuit électronique est réalisé en interconnectant des composants moléculaires élémentaires (c’est-à-dire des « équivalent-transistors », chacun réalisé avec une molécule unique) par de minuscules brins conducteurs métalliques.

Électronique moléculaire organique

Cette approche utilise les propriétés d’un matériau vivant où des molécules biologiques sont extraites de leur contexte naturel et sont ré-utilisées dans un environnement étranger pour en faire une utilisation artificielle différente. On utilise donc un matériau vivant à des fins totalement « non-biologiques ».

L'élaboration de nouveaux dispositifs de stockage capables de stocker plusieurs dizaines de téraoctets dans de minuscules cubes de quelques cm3 (datacubes), sont l'une des applications pionnières de cette filière. Exploitant les propriétés de la bactériorhodopsine, une protéine sensible à la lumière , située dans la membrane des halobactéries. Elle est capable de convertir de l'énergie lumineuse en énergie chimique, plus précisément de transloquer un proton après avoir reçu un photon (pompe à protons). Cette activité repose sur une transition entre l'état d'origine et un état intermédiaire due à l'excitation par un photon. Après l'excitation, la protéine ne se maintient que pendant un certain laps de temps dans l'état intermédiaire, avant de revenir à son état d'origine. Mais, par mutagenèse dirigée, on peut synthétiser une version nouvelle de la bactériorhodopsine conservant l'état intermédiaire, au lieu de revenir spontanément à son état d'origine.

La bactériorhodopsine intéresse ainsi l'industrie du stockage de données, dans la mesure où elle pourrait servir d'unité de stockage d'information binaire extrêmement miniaturisée pilotable par des impulsions lumineuses (à raison d'un bit par molécule, un disque de 12 centimètres de diamètre pourrait contenir de 20 à 50 To).

Page générée en 0.097 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise