Les NP et les NPE étant tous les deux présents dans l’environnement, la toxicité des deux composés est prise en compte et est exprimée en équivalent toxique de NP ou ET.
Le NP est relativement toxique, notamment pour des organismes aquatiques :
La toxicité des NPE augmente de façon inversement proportionnelle à la longueur de la chaîne éthoxyle. Les NP sont de 2 à 200 fois plus toxique que les NPE (réf 4).
Des NP et NPE sont détectés, à faible dose partout (eau, air, sol, sédiments et biote). L’estimation de l’exposition possible aux NP et aux NPE est cependant délicate du fait des nombreuses sources potentielles d’exposition à ces composés et d'une mauvaise connaissance de leur cinétique et durée de vie dans l'environnement. Les données publiées laissent penser que la bioaccumulation du NP et des NPE via la chaine alimentaire aquatique existe, avec des facteurs de bioconcentration (FBC) et de bioaccumulation (FBA) pour le biote (dont algues et plantes) variant de 0,9 à 3 400 pour les invertébrés et poissons. Des calculs complets devraient prendre en compte l'action conjointe et éventuellement synergique de toutes les formes et dérivés ou composés de nonylphénols, via l’exposition directe des humains à ces différents composés présents dans de nombreux produits de consommation, mais également via l’exposition indirecte due aux rejets industriels et domestiques, ainsi qu'à des relarguages différés (par exemple par remise en suspension de sédiments lors de crues ou curages). Les données de surveillance des milieux auxquels les humains sont le plus susceptibles d’être exposés sont trop limitées pour qu'on puisse estimer avec précision l’exposition humaines ou animales aux NP et aux NPE. (réf 4)
Acevedo et son équipe ont montré chez la souris ont que le nonylphénol accroît significativement le risque de cancer mammaire (ici pour 30 mg·kg-1 de nonylphénol une fois par jour dans la nourriture durant 32 semaines.
Les NP peuvent être analysés par plusieurs méthodes ;
Sabik et al. ont mesuré la quantité de NP et de NPE dans l’eau du fleuve St-Laurent à la sortie de la station d’épuration de l’île de Montréal à l’aide d’un LC-MS-MS. Les échantillons ont été prélevés en amont et en aval deux fois par jour à trois reprises. L’eau a été filtrée par des pores de 293 mm de diamètre pour enlever les plus grosses particules, puis passée par une cartouche C18. Ensuite, 10 μL a été injecté dans une colonne de chromatographie liquide à température pièce. La phase mobile était 98% de méthanol et 2% d’une solution aqueuse de 1% d’acide formique. Un tandem MS-MS a été utilisé pour pouvoir mieux séparer les isomères. Ils ont obtenu une concentration de 1.0 ± 0.3 μg/L de NP et de 144 3 μg/L de NPE, en considérant seulement la fraction dissoute dans l’eau.
Il est utile de distinguer les isomères des nonylphénols pour déterminer dans quelles proportions ils sont présents dans des mélanges de plusieurs contaminants. Pour cela, Meinert et al. ont utilisé la technique d’analyse d’effets dirigés. Cette technique implique deux phases d’analyse. Premièrement, il y a la phase de préparation des échantillons par un GC-FID, où ils ont pu séparer en 11 fractions un mélange de 4-nonylphénol. Selon ce qui a été obtenu, il est fort probable que chaque pic soit un mélange de deux isomères. La résolution pourrait être améliorée, mais les temps de rétention augmenteraient grandement. De ce qui est initialement injecté, 1% se rend au détecteur, puis 99% est récupéré afin de passer l’étape 2. Ensuite, chaque fraction est injectée dans un 2e GC, qui est par contre couplé à une spectrographie de masse, qui permet d’évaluer les différentes parties d’embranchements provenant d’un isomère. L’ion moléculaire à 107 m/z est associé à l’ion phénol sans la chaîne de carbones. Plusieurs autres ions moléculaires sont obtenus et correspondent à l’endroit où l’embranchement de la chaîne a lieu. La reproductibilité est très bonne, puisque pour 600 groupes de 11 fractions, les temps de rétention varient de seulement 3 secondes et l’écart-type des pics est inférieur à 9%.
Des nonylphénols peuvent rapidement et efficacement être détectés avec une machine relativement petite et portative en utilisant un microréacteur où le liquide est transporté à travers des micropores, où des anti-nonylphénols ont été greffés. Ces pores sont le lieu de réaction où le liquide pénètre. La réaction est la liaison entre l’anti-NP et le NP. Cette réaction est en compétition avec la liaison de l’anti-NP à une peroxidase conjuguée de nonylphénol, NP-HRP. C’est cette enzyme qui permet la mesure, puisqu’elle absorbe à 450 nm. Donc s’il y a présence de NP, l’enzyme ne se lie pas et est éliminée au lavage suivant la réaction. La limite de détection est de 0,1 ng/mL et la sensibilité de 500 ng/mL.