En mécanique, le principe de moindre action affirme qu'un corps prend la direction qui lui permet de dépenser le moins d'énergie dans l'immédiat (ou d'acquérir le plus d'énergie dans l'immédiat), en tenant compte qu'il doit y avoir continuité du mouvement (positions et vitesses) s'il y a continuité des conditions physiques.
En reliant deux points, la trajectoire prise par le corps n'est pas toujours celle qui lui fait dépenser globalement le moins d'énergie car c'est la dépense immédiate (ou plutôt instantanée) d'énergie qui est minimisée (comme si le corps ne percevait que les conditions de son environnement immédiat) et si le chemin parcouru est long, un chemin plus court avec une dépense d'énergie immédiate plus élevée peut permettre une dépense globale inférieure. Une analogie avec la consommation en carburant d'une voiture peut être faite.
Dans ce « résumé », « énergie » signifie énergie cinétique, et une « dépense d'énergie » signifie que de l'énergie cinétique se transforme en énergie potentielle.
Avant Lagrange ce principe se concevait à partir de considérations métaphysiques, indépendamment de tout autre principe physique.
Lagrange, en 1756, fut celui qui donna au Principe de moindre action son expression mathématique efficace qui est toujours d'actualité. Il fut aussi celui qui développa la mécanique analytique et démontra, dans son ouvrage de 1788, ce principe à partir de la conservation de l'énergie et du principe des vitesses virtuelles (nommé aussi principe de d'Alembert). Le principe des vitesses virtuelles est le principe fondamental de la dynamique de Newton exprimé dans le langage de l'analyse mathématique, alors balbutiante au regard de ses développements ultérieurs.
Cette démonstration met un point final aux interrogations métaphysiques sur le principe de moindre action : le principe est équivalent à un principe physique de Newton, non sujet aux critiques métaphysiques, et la « cause finale » est alors comprise comme un artifice mathématique.
Le principe de moindre action utilise l'hypothèse de deux points fixes sur le parcours du mobile : un point de départ, mais aussi un point d'arrivée. Cela a souvent été critiqué comme étant l'utilisation dans le raisonnement d'une « cause finale », ce qui est contraire à la causalité qui suit la flèche du temps en physique.
En fait, si le point de départ est doté de conditions initiales (coordonnées et vitesse), le point d'arrivée n'a pas de coordonnées précises ni de vitesse imposée : il existe, c'est tout. L'existence du point final dans le raisonnement permet d'émettre l'hypothèse de l'existence d'un trajet à partir de l'état initial et de déterminer ses conditions (équations d'Euler-Lagrange), mais n'impose aucune autre condition en dehors de la continuité indiquée plus haut (ce travail peut même montrer que seul un trajet de longueur nulle est possible dans les cas de stabilité du mobile).
Dans le but de trouver une formulation plus simple de l'électrodynamique quantique, vers 1940, Richard Feynman chercha une formulation du principe de moindre action en mécanique quantique. La solution lui vint d'une idée que Paul Dirac avait exprimée dans un article.
Le principe a ainsi permis une reformulation de cette branche de la physique sous forme d'intégrale de chemin qui s'est révélé, en effet, plus simple que la formulation hamiltonnienne pour l'électrodynamique quantique.
Cette formulation a donné lieu à des interprétations telles que « la particule teste tous les chemins possibles avec des probabilités différentes ».
Comme on peut s'y attendre, la formulation quantique permet de retrouver, à la limite classique, la formulation habituelle et le chemin qui rend extrémale l'action classique est un col de l'intégrale : seul celui-ci contribue de manière significative dans l'intégrale.