Suivant le système étudié, et le cadre théorique dans lequel on le considère, l'expression mathématique du principe de moindre action change légèrement de forme.
C'est un des rares principes ayant survécu aux multiples mutations de la physique, mais il a rarement été à l'origine d'une découverte : il est plutôt utilisé pour reformuler ou redémontrer des lois trouvées par d'autres biais. Sa plus grande contribution a sans doute été de mettre W. R. Hamilton sur la voie de ses travaux théoriques (voir: Mécanique hamiltonienne). En physique relativiste, les équations d'Euler-Lagrange restent inchangées, mais le lagrangien n'est plus égal à la différence entre l'énergie cinétique et l'énergie potentielle. En fait, à partir de la relativité il est apparu que le principe de moindre action se base sur l'existence d'une trajectoire continue, paramétrée par le temps, qui minimise une fonction ou la différence entre des fonctions du système étudié, déterminées à partir de principes généraux, tels que par exemples :
Il se trouve qu'en physique classique, ces fonctions du système sont les énergies cinétiques et potentielles, ce n'est plus le cas en relativité.
En physique relativiste, et en l'absence de champ électromagnétique, on montre que la fonction du corps qui est minimisée dans le principe est particulièrement simple : il s'agit de − mcτ, où τ est « temps propre » du trajet, qui est à la fois le temps s'écoulant dans le référentiel du corps au cours du trajet et la longueur de la trajectoire mesurée par la métrique de l'espace : cela revient à maximiser le « temps propre », du fait du signe − et de la constance de la masse m et de la vitesse de la lumière c.
Un champ électromagnétique amène des différences de parcours entre les corps, suivant leurs charges et leurs répartitions.
Et comme en physique classique, toutes les équations peuvent être obtenues sans le principe de moindre action.
L'idée que la trajectoire minimise une durée ou une longueur est d'abord née chez Pierre de Fermat vers 1655 pendant son étude de l'optique (voir Principe de Fermat). Même si elle a interessé Leibnitz et Newton, c'est Maupertuis, vers 1740, qui fera progresser la formulation verbale et mathématique d'un « principe de moindre action » pour la mécanique. Euler, en développant l'analyse mathématique, commença à reformuler ce principe, mais c'est Lagrange qui lui donnera sa méthode et sa forme définitive en 1755, pour ensuite l'inclure comme une simple conséquence de sa mécanique analytique.
En 1827, Hamilton, en cherchant à appliquer ce principe à l'optique, développa une nouvelle approche basée sur l'étude de l'énergie par la méthode analytique : la mécanique hamiltonienne, que Jacobi peaufinera vers 1840.
Depuis sa formulation, ce principe a guidé de nombreux scientifiques dans leurs recherches, notamment de Broglie vers 1920 dans son travail sur la théorie des quanta. En 1915, Hilbert a démontré les équations de la gravitation de la relativité générale à l'aide du principe (Einstein les a trouvé par une autre méthode), et Richard Feynman, en 1942, a proposé une nouvelle formulation du principe dans sa thèse de doctorat intitulée Le Principe de moindre action en mécanique quantique, permettant une réécriture de la mécanique quantique.