Représentation de groupe - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Quelques exemples

  • Commençons par l'exemple le plus trivial : si G est un sous-groupe de GLn(K), G agit naturellement sur Kn. La représentation associée est appelée représentation standard.

Irréductibilité

Définitions

On dit qu'un module V est simple s'il ne contient pas d'autre sous-module que {0} et V.

Si (V,ρ) est une représentation, on dit que cette représentation est irréductible si V est simple en tant que K[G]-module. Formulé autrement, ceci signifie que V n'admet pas de sous-espace vectoriel propre qui soit stable sous l'action de G. En termes matriciels, cela signifie qu'on ne peut pas trouver de base dans laquelle la représentation de G soit donnée par des matrices ayant toutes la même structure triangulaire supérieure par blocs (avec au moins 2 blocs).

Une représentation est complètement réductible si V est somme directe de sous-espaces stables (par G) irréductibles. En termes de K[G], cela signifie que V peut-être décomposé en somme directe de K[G]-modules simples (on dit alors aussi que V est semi-simple). En termes matriciels, cela signifie qu'on peut trouver une base dans laquelle la représentation de G soit faite par des matrices diagonales par blocs, où chacun des blocs est une représentation irréductible.

Le fait de considérer des modules simples permet de beaucoup simplifier certains raisonnements : par exemple, un morphisme entre deux représentations irréductible est soit nul, soit inversible...

On peut souvent ramener l'étude des représentations de G à l'étude de ses représentations irréductibles : si V n'est pas irréductible, on peut toujours considérer un sous-espace vectoriel de V qui soit stable par G. Si jamais V est de dimension finie, on pourra ainsi finir par trouver un sous-module simple.

Théorème de Maschke

Si G est fini et si la caractéristique de K est nulle ou ne divise pas card(G), alors tout K[G]-module est semi-simple (ou de façon équivalente toute représentation de G dans K est complètement réductible).

En fait, plus généralement, on peut énoncer un théorème similaire pour les groupes compacts (un groupe fini est toujours compact) et les représentations de groupes topologiques.

Page générée en 0.237 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise