On dit qu'un module V est simple s'il ne contient pas d'autre sous-module que {0} et V.
Si (V,ρ) est une représentation, on dit que cette représentation est irréductible si V est simple en tant que K[G]-module. Formulé autrement, ceci signifie que V n'admet pas de sous-espace vectoriel propre qui soit stable sous l'action de G. En termes matriciels, cela signifie qu'on ne peut pas trouver de base dans laquelle la représentation de G soit donnée par des matrices ayant toutes la même structure triangulaire supérieure par blocs (avec au moins 2 blocs).
Une représentation est complètement réductible si V est somme directe de sous-espaces stables (par G) irréductibles. En termes de K[G], cela signifie que V peut-être décomposé en somme directe de K[G]-modules simples (on dit alors aussi que V est semi-simple). En termes matriciels, cela signifie qu'on peut trouver une base dans laquelle la représentation de G soit faite par des matrices diagonales par blocs, où chacun des blocs est une représentation irréductible.
Le fait de considérer des modules simples permet de beaucoup simplifier certains raisonnements : par exemple, un morphisme entre deux représentations irréductible est soit nul, soit inversible...
On peut souvent ramener l'étude des représentations de G à l'étude de ses représentations irréductibles : si V n'est pas irréductible, on peut toujours considérer un sous-espace vectoriel de V qui soit stable par G. Si jamais V est de dimension finie, on pourra ainsi finir par trouver un sous-module simple.
En fait, plus généralement, on peut énoncer un théorème similaire pour les groupes compacts (un groupe fini est toujours compact) et les représentations de groupes topologiques.