Théorème fondamental de la géométrie projective - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Second théorème fondamental de la géométrie projective

Le second théorème fondamental de la géométrie projective établit le liens avec les isomorphismes (ou collinéations) entre espaces projectifs au sens synthétique et l'algèbre linéaire: toute isomorphisme entre deux espaces projectifs qui vérifient l'axiome de desargue provient d'une bijection semi-linéaire entre des espaces vectoriels.

Soient K et L des corps (commutatifs ou non), E et F des espaces vectoriels de dimensions (finies ou infinies) supérieures ou égales à 2 sur K et L respectivement.

Collinéations

On suppose que les dimensions de E et F sont supérieures ou égales à 3.

Considérons les espaces projectifs P(E) et P(F) déduits de E et F respectivement. On appelle collinéation de P(E) sur P(F) toute bijection u de P(E) sur P(F) telle que l'image par u de toute droite projective de P(E) est une droite projective de P(F).

La bijection réciproque d'une collinéation est une collinéation et la composée de deux collinéations est une collinéation. Les collinéations ne sont autres que les isomorphismes entre espaces projectifs du point de vue de la géométrie synthétique. Si K = L et si E = F, l'ensemble des collinéations de P(E) sur lui-même est un groupe pour la composition des applications.

Si K = L, toute homographie de P(E) sur P(F) est une collinéation, et en particulier, si E = F, le groupe projectif PGL(E) de E est un sous-groupe du groupe des collinéations de P(E), qui est distingué dans ce groupe.

Semi-homographies

Étant donnée un isomorphisme de corps σ de L sur L, on dit qu'une application f de K sur L est σ-linéaire ou semi-linéaire relativement à σ si, quels que soient les vecteurs x et y de E et les scalaires a et b de K, on a f(ax + by) = σ(a)f(x) + σ(b)f(y). Si K = L, les applications linéaires de E dans F ne sont autres que les applications de E dans F qui sont semi-linéaires relativement à l'identité de K. Ainsi, les applications semi-linéaires généralisent les applications linéaires.

Pour toute application semi-linéaire bijective f de E sur F (s'il en existe, les dimensions finies ou infinies de E et F sur K et L respectivement sont alors égales), f envoie toute droite vectorielle de E sur une droite vectorielle de F (les droites vectorielles étant les sous-espaces vectoriels de dimension 1), et dont induit une application u de P(E) sur P(F) : pour toute point x de P(E), qui est une droite vectorielle D de E, u(x) = f(D). On appelle semi-homographie de P(E) sur P(F) toute bijection entre ces ensembles déduite d'une application semi-linéaire bijective de E sur F. Si les dimensions de E et F sont supérieures à 3, l'application u est alors une collinéation de P(E) sur P(F), et il en est de même de la bijection réciproque de u.

On suppose qu'il existe des isomorphismes σ et τ de K sur L, f une application σ-linéaire bijective E sur F et g et une application τ-linéaire bijective de E sur L (les dimensions sont alors égales). Pour que les semi-homographies de P(E) sur P(F) soient égales, il faut et il suffit qu'il existe un élément non nul μ de K tel que τ(a) = σ(μaμ − 1) pour tout a dans K et g(v) = fv) pour tout v dans E. Si K est commutatif, alors σ = τ et, si de plus K = L, alors cela signigie que g(v) = μf(v) pour toutv dans E (f et g sont proportionnelles).

On suppose que K = L et que tout automorphisme de K est intérieur. Alors toute semi-homographie de P(E) sur P(F) est une homographie.

Exemples

  • Si K = L est le corps R des nombres réels, alors l'identité est l'unique automorphisme de R et toute application semi-linéaire de E sur F est une application linéaire et toute semi-homographie de P(E) sur P(F) est une homographie.
  • On suppose que K = L est le corps C des nombres complexes. Les application semi-linéaire de E dans F pour la conjugaison de C ne sont autres que les applications antilinéaires et les semi-homographies de P(E) sur P(F) pour la conjugaison C ne sont autres que les antihomographies. Si E et F sont de dimensions finies, les seuls applications semi-linéaires de E sur F qui sont continues sont les applications linéaires et les applications antilinéaires et les seules semi-homographies de P(E) sur P(F) qui sont continues sont les homographies et les antihomographies.
  • On suppose que K = L est le corps H des quaternions. Tout automorphisme de H est un automorphisme intérieur et donc toute semi-homographie de P(E) sur P(F) est une homographie.

Second théorème fondamental de la géométrie projective

On suppose que les dimensions de E et F sont supérieures ou égales à 3.

Second théorème fondamental de la géométrie projective. Les collinéations de P(E) sur P(F) ne sont autres que les semi-homographies de P(E) sur P(F).

Donc les isomorphismes de P(E) sur P(F) en les considérant du point de vue de la géométrie synthétique sont les semi-homographies. Cela établit un lien entre la géométrie projective et l'algèbre linéaire.

Si K = L est le corps R des nombres réels ou le corps H des quaternions, alors les collinéations de P(E) sur P(F) ne sont autres que les homographies. Si K = L est le corps C des nombres complexes et si E et F sont se dimensions finies égales, alors les collinéations continues de P(E) sur P(F) ne sont autres que les homographies et les antihomographies.

On suppose qu'il existe une collinéation f de P(E) sur P(F). Alors l'image par f de tout sous-espace projectif de P(E) est un sous-espace projectif de P(F), et donc f induit une bijection g de l'ensemble S des sous-espaces projectifs de P(E) sur l'ensemble T des sous-espaces projectifs de P(F) et g est un isomorphisme d'ensembles ordonnés (ou de treillis) pour l'inclusion (autrement dit, g est une bijection qui est croissante ainsi que sa bijection réciproque). Réciproquement, tout isomorphisme d'ensembles ordonnés de S sur T est induit par une unique collinéation de P(E) sur P(F).

Page générée en 0.640 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise