Algèbre linéaire - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

L’algèbre linéaire est la branche des mathématiques qui s'intéresse à l'étude des espaces vectoriels (ou espaces linéaires), de leurs éléments les vecteurs, des transformations linéaires et des systèmes d'équations linéaires (théorie des matrices).

Histoire

L'histoire de l'algèbre linéaire commence avec René Descartes qui le premier pose des problèmes de géométrie, comme l'intersection de deux droites, sous forme d'équation linéaire. Il établit alors un pont entre deux branches mathématiques jusqu'à présent séparées : l'algèbre et la géométrie. S'il ne définit pas la notion de base de l'algèbre linéaire qui est l'espace vectoriel, il l'utilise déjà avec succès. Après cette découverte, les progrès en algèbre linéaire vont se limiter à des études ponctuelles comme la définition et l'analyse des premières propriétés des déterminants par Jean d'Alembert.

Ce n'est qu'au XIXe siècle que l'algèbre linéaire devient une branche des mathématiques à part entière. Carl Friedrich Gauss trouve une méthode générique pour la résolution des systèmes d'équations linéaires, Marie Ennemond Camille Jordan résout définitivement le problème de la réduction d'endomorphisme. En 1843, William Rowan Hamilton (inventeur du terme vector) découvre les quaternions. En 1844, Hermann Grassmann publie un livre Die lineare Ausdehnungslehre.

Le début du XXe siècle voit la naissance de la formalisation moderne des mathématiques. Les espaces vectoriels deviennent alors une structure générale omni-présente dans presque tous les domaines mathématiques.

Présentation élémentaire

L'algèbre linéaire commence par l'étude de vecteurs dans les espaces cartésiens de dimension 2 et 3. Un vecteur, ici, est un segment de droite caractérisé à la fois par sa longueur (ou norme), sa direction et son sens. Les vecteurs peuvent alors être utilisés pour représenter certaines entités physiques comme des déplacements, additionnés entre eux ou encore multipliés par des scalaires (nombres), formant ainsi le premier exemple concret d'espace vectoriel.

L'algèbre linéaire moderne a été étendue pour considérer les espaces de dimension arbitraire ou infinie. Un espace vectoriel de dimension n est appelé un n-espace. La plupart des résultats obtenus dans les 2-espaces et 3-espaces peuvent être étendus aux espaces de dimensions supérieures. Bien que beaucoup de personnes ne peuvent appréhender correctement un vecteur dans un n-espace, ils sont utiles pour représenter des données. Les vecteurs étant des listes ordonnées à n composantes, on peut manipuler ces données efficacement dans cet environnement. Par exemple en économie, on peut créer et utiliser des vecteurs à huit dimensions pour représenter le produit national brut de huit pays.

Intérêt

Sous leur forme la plus simple, les applications linéaires dans les espaces vectoriels représentent intuitivement les déplacements dans les espaces géométriques élémentaires comme la droite, le plan ou notre espace physique. Les bases de cette théorie remplacent maintenant la représentation construite par Euclide au IIIe siècle av. J.-C.. La construction moderne permet de généraliser la notion d'espace à des dimensions quelconques.

L'algèbre linéaire permet de résoudre tout un ensemble d'équations dites linéaires utilisées non seulement en mathématiques ou en mécanique, mais dans de nombreuses autres branches comme les sciences naturelles ou les sciences sociales.

Les espaces vectoriels forment aussi un outil fondamental pour les sciences de l'ingénieur et servent de base à de nombreux domaines dans la recherche opérationnelle.

Enfin, c'est un outil utilisé en mathématiques pour résoudre des problèmes aussi divers que la théorie des groupes, des anneaux ou des corps, l'analyse fonctionnelle, la géométrie différentielle ou la théorie des nombres.

Page générée en 0.070 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise