En mathématiques, et plus précisément en topologie, la théorie des tresses est l'étude des tresses, objet mathématique formalisant ce qu'on appelle tresse (ou natte) dans la vie courante. Les tresses ont une structure de groupe naturelle, et possèdent des liens profonds avec des domaines divers des mathématiques et de la physique : topologie, théorie des noeuds, algèbre, combinatoire algébrique, physique statistique...
Les groupes de tresses peuvent être définis de différentes manières équivalentes, illustrant les relations qu'ils entretiennent avec différents domaines des mathématiques.
Soit
On appelle brin le graphe d'une application b continue de
On appelle tresse géométrique à n brins la réunion de n brins disjoints. On considère que deux tresses géométriques représentent la même tresse "abstraite" si elle peuvent être obtenue l'une à partir de l'autre en bougeant les brins continument, sans que les brins ne se traversent ni ne se détachent à leurs extrémités. On dit alors que les deux tresses géométriques sont isotopes.
On définit une loi de composition sur l'ensemble des tresses géométriques, telle que le produit de deux tresses est obtenus simplement en les empilant l'une au-dessus de l'autre. Ce produit est associatif et compatible avec la relation d'isotopie. Le produit d'une tresse avec son image dans un miroir horizontal est isotope à la tresse triviale (sans croisement), dont la classe d'équivalence joue le rôle d'élément neutre. Ceci permet donc également de définir l'inverse d'une tresse. Finalement, l'ensemble des tresses géométriques à n brins quotienté par la relation d'isotopie est un groupe, noté Bn.
Le groupe de tresses
On définit ce qu'on appelle un espace de configuration
On remarque par ailleurs qu'en général, les brins d'une tresse n'arrivent pas dans le meme ordre qu'au départ. Par exemple, sur le premier dessin, le brin qui part d'en haut à gauche arrive en bas à droite. Il existe par contre des tresses dont tous les brins arrivent à la meme position que celle dont ils sont partis. Une telle tresse est appelée tresse pure. L'ensemble des tresses pures forme un sous groupe du groupe de tresses.
Le lien entre ces deux notions est le suivant : le groupe fondamental de
En quotientant
Par simplification on appelle tresse à
On plonge
On note