Physique statistique - Définition et Explications

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La physique statistique a pour but d'expliquer le comportement et l'évolution de systèmes physiques comportant un grand nombre de particules (on parle de systèmes macroscopiques), à partir des caractéristiques de leurs constituants microscopiques (les particules). Ces constituants peuvent être des atomes (Un atome (du grec ατομος, atomos, « que l'on ne peut diviser ») est la plus petite partie d'un corps simple pouvant se combiner chimiquement avec une autre. Il est généralement...), des molécules, des ions, des électrons, des photons (En physique des particules, le photon est la particule élémentaire médiatrice de l'interaction électromagnétique. Autrement dit, lorsque deux particules chargées...), des neutrinos, ou des particules élémentaires. Ces constituants, et les interactions qu'ils peuvent avoir entre eux, sont en général décrits par la mécanique quantique (La mécanique quantique est la branche de la physique qui a pour but d'étudier et de décrire les phénomènes fondamentaux à l'œuvre dans les...), mais la description macroscopique d'un ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout »,...) de tels constituants ne fait, elle, pas directement appel (ou en tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) cas pas toujours) à la mécanique (Dans le langage courant, la mécanique est le domaine des machines, moteurs, véhicules, organes (engrenages, poulies, courroies, vilebrequins, arbres de...) quantique. De fait, cette description macroscopique, en particulier la thermodynamique (On peut définir la thermodynamique de deux façons simples : la science de la chaleur et des machines thermiques ou la science des grands systèmes en équilibre. La première définition est aussi la première...), a été obtenue pour partie avant le développement de la mécanique quantique en tant que théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée...) physique (La physique (du grec φυσις, la nature) est étymologiquement la « science de la nature ». Dans un sens général et ancien,...), essentiellement dans la seconde ( Seconde est le féminin de l'adjectif second, qui vient immédiatement après le premier ou qui s'ajoute à quelque chose de nature identique. La seconde est une unité de mesure du temps. La...) moitié du XIXe siècle.

On distingue la physique statistique (La physique statistique a pour but d'expliquer le comportement et l'évolution de systèmes physiques comportant un grand nombre de particules (on parle de systèmes macroscopiques), à partir des caractéristiques de...) d'équilibre (au sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une évolution progressive...) d'équilibre thermodynamique), auquel cet article est consacré, de la physique statistique (La statistique est à la fois une science formelle, une méthode et une technique. Elle comprend la collecte, l'analyse, l'interprétation de données ainsi que la présentation...) hors d'équilibre.

Historique

Mouvement brownien (Le mouvement brownien, ou processus de Wiener est une description mathématique du mouvement aléatoire d'une « grosse » particule immergée dans un fluide et qui n'est...) d'une particule.

La physique statistique (appelé aussi « thermodynamique statistique ») fut introduite initialement sous la forme de la théorie cinétique (Le mot cinétique fait référence à la vitesse.) des gaz (Un gaz est un ensemble d'atomes ou de molécules très faiblement liés et quasi-indépendants. Dans l’état gazeux, la matière n'a pas de forme propre ni de volume propre : un gaz...) à partir du milieu du XIXe siècle, principalement par Kelvin (Le kelvin (symbole K, du nom de Lord Kelvin) est l'unité SI de température thermodynamique. Par convention, les noms d'unité sont des noms communs et s'écrivent en minuscule...), Maxwell et Boltzmann. Cette première approche visait à proposer un modèle simple de la matière (La matière est la substance qui compose tout corps ayant une réalité tangible. Ses trois états les plus communs sont l'état solide, l'état liquide, l'état gazeux. La matière occupe de l'espace et possède...) à l'échelle atomique, et en particulier des collisions entre atomes ou molécules, pour reproduire le comportement de certaines quantités macroscopiques. C'est à cette époque que l'interprétation de la pression (La pression est une notion physique fondamentale. On peut la voir comme une force rapportée à la surface sur laquelle elle s'applique.) comme mesure de la quantité de mouvement (En physique, la quantité de mouvement est la grandeur physique associée à la vitesse et la masse d'un objet. La quantité de mouvement d'un système fait partie, avec l'énergie, des valeurs qui se conservent...) des constituants d'un gaz a été formalisée.

La mécanique statistique fut formalisée en 1902 par Gibbs, son formalisme permettant de généraliser et de justifier a posteriori les principes de la thermodynamique d'équilibre.

Les premières extensions de la physique statistique, par rapport à la mécanique statistique, ont été l'introduction des propriétés électriques et magnétiques de la matière au sein des modèles, permettant la description des transitions de phase (Le mot phase peut avoir plusieurs significations, il employé dans plusieurs domaines et principalement en physique :) dans les matériaux (Un matériau est une matière d'origine naturelle ou artificielle que l'homme façonne pour en faire des objets.) magnétiques ou diélectriques, comme la transition ferromagnétique.

Une autre étape importante fut la modification des formules statistiques, entre les années 1920 et 1930, pour tenir compte des effets de l'indiscernabilité au niveau quantique des particules (principe d'exclusion de Pauli). Cette modification fut effectuée par Bose et Einstein pour les systèmes de particules de spin (Le spin est une propriété quantique intrinsèque associée à chaque particule, qui est caractéristique de la nature de la particule, au même titre que sa masse et sa charge électrique. Comme...) entier (bosons) et par Fermi et Dirac pour les systèmes de particules de spin demi-entier (fermions).

Outils et procédés

La formulation (La formulation est une activité industrielle consistant à fabriquer des produits homogènes, stables et possédant des propriétés spécifiques,...) moderne de cette théorie se fonde sur la description des systèmes physiques étudiés par le biais d'ensembles statistiques. De tels ensembles représentent la totalité des configurations possibles du système associées à leur probabilités de réalisation. À chaque ensemble est associée une fonction de partition qui, par manipulations mathématiques (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les nombres, les figures, les structures et les...), permet d'extraire les grandeurs thermodynamiques du système. Selon les relations du système avec le reste de l'univers (L'Univers est l'ensemble de tout ce qui existe et les lois qui le régissent.), on distingue généralement trois types d'ensemble, du plus simple au plus complexe :

  • l'ensemble microcanonique
  • l'ensemble canonique
  • l'ensemble grand canonique
Tableau (Tableau peut avoir plusieurs sens suivant le contexte employé :) résumant
les ensembles
en physique statistique
Ensembles
Microcanonique Canonique Grand-canonique
Variables indépendantes E, N, V ou B T, N, V ou B T, μ, V ou B
Fonction microscopique

Ω
Potentiel thermodynamique

Ensemble microcanonique

Cet ensemble décrit le cas idéal (En mathématiques, un idéal est une structure algébrique définie dans un anneau. Les idéaux généralisent de façon féconde l'étude de la divisibilité...) d'un système complètement (Le complètement ou complètement automatique, ou encore par anglicisme complétion ou autocomplétion, est une fonctionnalité...) isolé d'énergie (Dans le sens commun l'énergie désigne tout ce qui permet d'effectuer un travail, fabriquer de la chaleur, de la lumière, de produire un mouvement.) E constante, et n'échangeant donc ni particule, ni énergie, ni volume (Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace.) avec le reste de l'univers. L'intérêt de ce modèle est qu'il permet de définir l'entropie (En thermodynamique, l'entropie est une fonction d'état introduite en 1865 par Rudolf Clausius dans le cadre du deuxième principe, d'après les travaux de Sadi Carnot. Clausius a...) sous sa forme la plus simple.

Entropie microcanonique

Le système étant à l'équilibre macroscopique, mais libre d'évoluer à l'échelle microscopique entre Ω micro-états différents, son entropie est donnée (Dans les technologies de l'information (TI), une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction d'affaire, d'un événement, etc.) par la formule de Boltzmann (1877) :

S \ = \ k_B \  \ln \Omega

kB est la constante de Boltzmann (La constante de Boltzmann k (ou kB) a été introduite par Ludwig Boltzmann lors de sa définition de l'entropie en 1873. Le système étant à l'équilibre macroscopique,...). Cette définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) correspond à l'entropie de Shannon  :

S \ = \ - \ k_B \sum_{i} p_i \ \ln p_i

d'une configuration de Ω micro-états équiprobables :

p_i \ = \ \frac{1}{\Omega}

Extensivité de l'entropie

L'énergie macroscopique totale E du système isolé étudié est toujours supérieure ou égale à une certaine valeur E0 minimale, appelée énergie de l'état fondamental (En physique quantique, les états fondamentaux d'un système sont les états quantiques de plus basse énergie. Tout état d'énergie supérieure à celle des états fondamentaux est un état excité.) du système. De plus, le comptage du nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) Ω de micro-états du système fermé d'énergie totale E nécessite en général l'introduction d'une certaine incertitude ΔE d'ordre mésoscopique.

On peut montrer que, pour un système « ordinaire », le nombre Ω de micro-états est une fonction rapidement croissante de l'énergie de la forme :

\Omega (E, N) \ \propto \ \left(E - E_0 \right)^N

N le nombre de degrés de liberté total ( Total est la qualité de ce qui est complet, sans exception. D'un point de vue comptable, un total est le résultat d'une addition, c'est-à-dire une somme. Exemple : "Le total des...) du système, supposé très grand. Il est alors possible de montrer que lorsque l'énergie totale E n'est pas trop proche de sa valeur minimale, l'entropie S(E,N) calculée par la formule de Boltzmann est :

  • de l'ordre de N, donc l'entropie microcanonique est bien extensive à la limite thermodynamique.
  • indépendante de la valeur exacte de l'incertitude ΔE.

Ensemble canonique

L'ensemble canonique décrit un système fermé en équilibre thermique (La thermique est la science qui traite de la production d'énergie, de l'utilisation de l'énergie pour la production de chaleur ou de froid, et des transferts de chaleur suivant différents phénomènes...) avec un thermostat (Un thermostat est un système assurant une température constante. Cela peut être un dispositif passif (type bouteille thermos) ou bien un appareil qui sert a réguler une...) extérieur. Ce système fermé peut donc échanger de l'énergie sous forme de transfert thermique (Un transfert thermique, appelé plus communément chaleur, est un transfert d'énergie microscopique désordonnée. Cela correspond en réalité à un transfert d'agitation...) avec l'extérieur, à l'exclusion de toute autre quantité (La quantité est un terme générique de la métrologie (compte, montant) ; un scalaire, vecteur, nombre d’objets ou d’une autre manière de dénommer la valeur d’une collection ou un groupe de...).

Fonction de partition canonique

Dans les conditions citées ci-dessus, on démontre que la probabilité (La probabilité (du latin probabilitas) est une évaluation du caractère probable d'un évènement. En mathématiques, l'étude des probabilités est un sujet de grande importance donnant lieu à...) pi pour que le système fermé réalise un état i d'énergie Ei est donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un événement, etc.) par la formule de Boltzmann :

p_i \ = \ \frac{e^{-\beta E_i}}{Z}

où le facteur \beta ={1\over {k_B T}}, parfois appelé « température inverse », traduit la thermalisation du système avec le thermostat extérieur à la température (La température est une grandeur physique mesurée à l'aide d'un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux...) T. Le facteur de normalisation Z se calcule en écrivant la condition des probabilités totales :

 \sum_{i} p_i \ = \ 1

Z est appelé la fonction de partition canonique du système fermé, et s'écrit explicitement :

Z \ = \ \sum_{\{k \ \mathrm{accessible}\}} e^{-\beta E_k}

Cette fonction de partition permet de déduire toutes les grandeurs macroscopiques du système fermé comme moyennes des grandeurs microscopiques associées.

Observables macroscopiques

L'énergie interne (En France, ce nom désigne un médecin, un pharmacien ou un chirurgien-dentiste, à la fois en activité et en formation à l'hôpital ou en cabinet pendant une durée...) U est la moyenne (La moyenne est une mesure statistique caractérisant les éléments d'un ensemble de quantités : elle exprime la grandeur qu'auraient chacun des membres de l'ensemble s'ils étaient tous...) macroscopique de l'ensemble des énergies microscopiques Ei :

 U \ = \ \langle \ E \ \rangle \ = \ \sum_{ \{ i \ \mathrm{accessible} \}} p_i \ E_i \ = \ - \ \frac{1}{Z} \ \frac{d Z}{d \beta} \ = \ - \ \frac{d \ln Z}{d \beta}

De même, pour toute grandeur A prenant des valeurs Ai définies sur les micro-états i associés aux énergies Ei, on peut définir la valeur moyenne :

\langle \ A \ \rangle \ = \ \sum_{ \{ i \ \mathrm{accessible} \}} p_i \ A_i

Appliquons en particulier cette formule à l'entropie, en posant que les micro-états Ei définissent des systèmes représentables comme des ensembles microcanoniques, nous avons défini pour chaque micro-état i une entropie microcanonique :

S_i \ = \ k_B \ \ln \Omega_i \ = \ - \ k_B \ \ln p_i

L'entropie totale du système prend alors la forme :

S \ = \ \langle \ S_i \ \rangle \ = \ \sum_{ \{ i \ \mathrm{accessible} \}} p_i \ S_i
 \  = \ - \ \sum_{ \{ i \ \mathrm{accessible} \}} k_B \ p_i \ \ln  p_i

Remplaçons la probabilité par son expression dans le logarithme :

 S \ = \ - \ k_B  \ \sum_{ \{ i \ \mathrm{accessible} \}} \ p_i \ \times \ \ln ( {e^{ - \beta E_i} / Z})
 = \ + \ k_B \  \sum_{\{i \ \mathrm{accessible} \}} \ p_i \ \times \  \left[  \ \beta E_i + \ln Z \ \right]

D'après la définition de la température inverse (En mathématiques, l'inverse d'un élément x d'un ensemble muni d'une loi de composition interne · notée multiplicativement, est un élément y tel que x·y = y·x = 1, si 1...), on a : kBβ = 1 / T, d'où :

S \ = \ {1 \over T} \ \sum_{\{i \ \mathrm{accessible} \}} \ p_i \ E_i \quad + \quad k_B \ \sum_{ \{ i \ \mathrm{accessible} \}} \ p_i \ \ln Z

On reconnaît dans le premier terme la valeur moyenne de l'énergie. Par ailleurs, le logarithme (En mathématiques, une fonction logarithme est une fonction définie sur à valeurs dans , continue et transformant un produit en somme. Le logarithme de base a où a est un réel strictement positif différent de 1 est une fonction de ce...) de Z est indépendant de l'indice i. On obtient alors en utilisant la condition de normalisation des probabilités :

S \ = \ {\langle \ E \ \rangle \over T } \ + \ k_B \ \ln Z \ = \ {U \over T} \ + \ k_B \ \ln Z

En rapprochant cette formule de celle donnant l'énergie libre (En thermodynamique l’énergie libre F (appelée aussi "énergie libre de Helmholtz") est une fonction d’état extensive dont la variation permet...) F en thermodynamique : F = U - T S, il vient naturellement :

F \ = \ - \ k_B T \ \ln Z

ou encore :

 Z \ = \ e ^{-\beta F}

Tableau récapitulatif

Les expressions de F, de U et de S sont suffisantes pour en déduire toutes les autres grandeurs thermodynamiques :

Nom Formule
énergie libre de Helmholz F \ = \ - \ { \ln Z \over \beta}
énergie interne U \ = \ - \ \left( {\partial\ln Z \over \partial\beta} \right)_{N,V}
pression p \ = \ - \ \left( {\partial F \over \partial V} \right) \ = \ {1 \over \beta} \ \left( {\partial \ln Z \over \partial V} \right)_{N,T}
entropie S \ = \ k_B \ ({\ln Z + \beta U})\,
enthalpie libre (La fonction enthalpie libre G a été introduite par Willard Gibbs. Elle est associée au second principe de la thermodynamique, principe d’évolution des systèmes physico-chimiques.) de Gibbs G \ = \ F \ + \ pV \ = \ - \ {\ln Z \over \beta} \ + \ {V \over \beta} \ \left( {\partial \ln Z \over \partial V} \right)_{N,T}
enthalpie (L'enthalpie (du préfixe en- et du grec thalpein: chauffer) est une fonction d'état de la thermodynamique, dont la variation permet d'exprimer la quantité de chaleur mise en jeu pendant la transformation isobare...) H \ = \ U \ + \ pV\,
chaleur (Dans le langage courant, les mots chaleur et température ont souvent un sens équivalent : Quelle chaleur !) spécifique à volume constant C_V \ = \ \left( {\partial U \over \partial T} \right)_{N,V}\,
chaleur spécifique à pression constante C_p  \ = \ \left( {\partial U \over \partial T} \right)_{N,p}\,
potentiel chimique \mu_i \ = \ - \ {1\over \beta} \ \left( {\partial \ln Z \over \partial N_i} \right)_{T,V,N}

Pour la dernière entrée, il ne s'agit pas de l'ensemble grand-canonique. Il est souvent utile de considérer que l'énergie d'une molécule (Une molécule est un assemblage chimique électriquement neutre d'au moins deux atomes, qui peut exister à l'état libre, et qui représente la plus petite quantité de...) donnée est distribuée entre plusieurs modes. Par exemple, l'énergie de translation est la partie de l'énergie relative au mouvement du centre de masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un corps : l'une quantifie l'inertie du corps (la masse inerte) et l'autre la contribution du corps...) de la molécule. L'énergie de configuration se rapporte à la portion de l'énergie associée aux diverses forces attractives et répulsives entre les molécules du système. Les autres modes sont tous considérés comme internes aux molécules. Ils incluent les modes rotationnels, vibrationnels, électroniques et nucléaires. Si nous supposons que chaque mode est indépendant, l'énergie totale peut être exprimée comme la somme de la contribution de chaque composant :

 E \ = \ E_t \ + \ E_c \ + \ E_n \ + \ E_e \ + \ E_r \ + \ E_v

où les indices t, c, n, e, r et v correspondent aux énergies des modes de translation, de configuration, nucléaires, électroniques, rotationnels, et vibrationnels respectivement.

En substituant cette équation (En mathématiques, une équation est une égalité qui lie différentes quantités, généralement pour poser le problème de leur identité. Résoudre l'équation consiste à déterminer toutes les...) dans la toute première équation, nous obtenons :

Z \ = \ \sum_{ i_j \ \mathrm{niveau \ interne \ a} \ j } \ \left[ \ \prod_{j \, \in \, \{ \, t,c,n,e,r,v \, \}} \ \exp \ ( \, - \, \beta \, E_{ji_j}) \ \right]

Grâce à l'indépendance des modes, on peut permuter la somme et le produit :

Z \ = \ \prod_{j \, \in \, \{ \, t,c,n,e,r,v \, \}} \ \left[ \ \sum_{ i_j \ \mathrm{niveau \ interne \ a} \ j} \ \exp \ ( \, - \, \beta \, E_{ji_j}) \ \right]

Ainsi, pour chaque mode, on peut définir une fonction de partition associée, et on obtient la fonction de partition totale comme produit de ces fonctions de partition de modes :

Z \ = \ Z_t \ \times \ Z_c \ \times \ Z_n \ \times \ Z_e \ \times \ Z_r \ \times \ Z_v

Des expressions simples en sont dérivées pour chacun des modes relatifs à des propriétés moléculaires, telles que les fréquences rotationnelles et vibrationnelles. Les expressions des diverses fonctions de partitions sont données dans la table suivante :

Type Formule
nucléaire (Le terme d'énergie nucléaire recouvre deux sens selon le contexte :) Z \ = \ 1 \quad (T< 10^8)
électronique Z_0 \ = \ \exp(k_BTD_e+W1 \exp(-\theta_{e1} / T)+ ...)\,
vibrationnel Z_v \ = \ \prod{\exp({ -\theta_{vj} /2T})\over{1 -\exp({ -\theta_{vj} /T})}}
rotationnel(linéaire) Z_r \ = \ { T \over \sigma } \theta_R
rotationnel (non linéaire) Z_r \ = \ { T \over \sigma }\sqrt{\pi T^3 \over \theta_1 \theta_2\theta_3}
translation Z_t \ = \ {(2 \pi mk_B T)^{3/2} \over {h^3}}
configuration (gaz parfait) Z_c \ = \ V\,

Ces équations peuvent être combinées avec celles de la première table pour déterminer la contribution d'un mode énergétique spécifique aux propriétés thermodynamiques. Par exemple, la « pression de rotation » peut être déterminée de cette manière. La pression totale peut être trouvée en sommant les contributions de pression de tous les modes individuels :

 p \ = \ p_t \ + \ p_c \ + \ p_n \ + \ p_e \ + \ p_r \ + \ p_v

Ensemble grand-canonique

Si le système est ouvert (c'est-à-dire s'il permet l'échange de particules avec l'extérieur), nous devons introduire les potentiels chimiques et remplacer la fonction de partition canonique par la fonction de partition grand-canonique :

 \Xi (V,T,\mu)=\sum_i \exp \left(\beta[\sum_{j=1} ^n \mu_j N_{ij}-E_i]\right) \,

Nij est le nombre de particules de la j-ème espèce (Dans les sciences du vivant, l’espèce (du latin species, « type » ou « apparence ») est le taxon de base de la systématique....) dans la i-ème configuration. Il peut arriver aussi que nous ayons d'autres variables à ajouter à la fonction de partition, une variable (En mathématiques et en logique, une variable est représentée par un symbole. Elle est utilisée pour marquer un rôle dans une formule, un...) par quantité conservée. La plupart d'entre elles, cependant, peuvent sans problème être interprétées comme des potentiels chimiques. Dans la plupart des problèmes de matière condensée, les effets sont non relativistes et la masse est conservée. La masse est inversement reliée à la densité (La densité ou densité relative d'un corps est le rapport de sa masse volumique à la masse volumique d'un corps pris comme référence. Le corps de référence est l'eau pure...), qui est la variable conjuguée de la pression.

Dans le reste de l'article, nous ignorerons cette difficulté et supposerons que les potentiels chimiques ne changent rien. Examinons l'ensemble grand canonique.

Recalculons toutes les expressions en utilisant l'ensemble grand-canonique. Le volume est fixé et ne figure pas dans ce traitement. Comme précédemment, j est l'indice des particules de la j-ème espèce et i est l'indice du i-ème micro-état :

 U=\sum_i {E_i \exp \left(-\beta[E_i-\sum_{j=1} \mu_j N_{ij}]\right) \over \Xi}\,

  N_j=\sum_i {N_{ij} \exp \left(-\beta[E_i-\sum_{j=1} \mu_j N_{ij}]\right) \over \Xi}\,
Nom Formule
Grand potentiel \Phi_G=-{\ln \Xi \over \beta}
énergie interne U=-\left({\partial \ln \Xi \over \partial \beta}\right)_{\mu}+ \sum {\mu_i \over \beta} \left({\partial \ln \Xi \over \partial \mu_i}\right)_{\beta}
nombre de particules N_i={1\over  \beta}\left({\partial \ln \Xi \over \partial \mu}\right)_{\beta}
entropie S=k_B\left(\ln  \Xi + \beta U- \beta \sum_i \mu_i N_i\right)\,
énergie libre de Helmholtz F=\Phi_G+\sum_i \mu_i N_i=-{ \ln \Xi \over  \beta}+ \sum {\mu_i \over \beta} \left({\partial \ln \Xi \over \partial \mu_i}\right)_{\beta}  \,
Page générée en 0.183 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique