La théorie des ensembles telle que la développait Cantor à la fin du XIXe siècle peut probablement être qualifiée de « naïve » au sens où celui-ci ne la développe pas axiomatiquement, ni dans un langage formel. Il s'agissait en particulier de travailler avec des ensembles infinis. Cependant les conceptions de Cantor ont forcément évolué au fil du temps. Il a développé des aspects de ce que l'on appelle maintenant la théorie des ensembles, sur la cardinalité, les ensembles bien ordonnés et les ordinaux dans divers articles. Certaines de ses lettres, par exemple sa lettre à Richard Dedekind de 1899, jouent aujourd'hui un rôle important pour comprendre ses conceptions, or sa correspondance n'a été publiée qu'en 1932. Bref il n'est pas si simple de caractériser « la » théorie des ensembles de Cantor.
Il semble cependant que très tôt Cantor ait pensé que toute propriété ne pouvait définir un ensemble, il distingue en particulier les ensembles transfinis, et l'infini absolu, qui est indépassable, comme celui de la collection de tous les ordinaux qui ne peut constituer un ensemble. En ce sens sa « théorie » (rappelons qu'elle n'est pas formelle) ne paraît pas sensible aux paradoxes de Burali-Forti, de Cantor, il connaissait d'ailleurs ces deux derniers et ne les considérait pas comme des paradoxes, ni même au paradoxe de Russell, qui bien que plus simple est dans le même style.
Russell a d'ailleurs montré que son paradoxe rendait contradictoire la théorie de Frege, qui est une théorie des fondements dont les aspects logiques (auxquels Cantor s'intéressait peu) ont eu une grande influence, mais qui utilisait une version de la compréhension non restreinte, c'est-à-dire la possibilité de définir un ensemble en compréhension à partir de n'importe quelle propriété du langage étudié.
Le cas est différent pour des paradoxes comme le paradoxe de Richard ou le plus simple paradoxe de Berry (le plus petit entier que l'on ne peut pas définir en moins de cent mots) qui mettent en jeu le langage lui-même. Si celui-ci n'est pas formalisé rien ne semble interdire de déduire ceux-ci. Cependant Cantor n'a jamais affirmé que l'on pouvait définir un ensemble en compréhension à partir de n'importe quelle propriété sans aucune restriction.
Il reste que la découverte de ces paradoxes ou antinomies, a joué un rôle important dans le développement de la théorie des ensembles après Cantor, en particulier son axiomatisation a été en partie développée en réponse à ceux-ci, pour déterminer précisément quelles définitions d'ensembles pouvaient être autorisées. Aujourd'hui, pour les chercheurs en mathématiques, « théorie des ensembles » signifie usuellement théorie axiomatique des ensembles. Toutefois, cette théorie, aux multiples variantes, est formalisée généralement dans le calcul des prédicats du premier ordre, c'est-à-dire que le langage est bien défini et que l'on ne peut dériver le paradoxe de Berry. Il s'agit d'une axiomatisation de la relation d'appartenance, permettant donc de parler des ensembles, mais ceux-ci ne sont finalement traités qu'indirectement par les axiomes. On considère généralement que toutes les notions mathématiques peuvent être formalisées dans ce cadre.
La théorie naïve ne se soucie pas d'une définition très précise du langage mais se contente des propriétés telles qu'on les exprime usuellement en mathématiques, sachant que celles-ci se formaliseront finalement dans le langage de la théorie axiomatique, les paradoxes jouant le rôle de garde-fous. Le langage est en particulier extensible, par l'ajout de nouvelles définitions.