Un transuranien, ou élément transuranien, est un élément chimique dont le numéro atomique est supérieur à celui de l'uranium, c'est-à-dire supérieur à 92. Les 25 premiers d'entre eux, dont le numéro atomique est compris entre 93 et 118 hormis l'élément 117, sont des éléments synthétiques n'ayant aucun isotope stable : ce sont tous des radioéléments produits artificiellement, au sein de réacteurs nucléaires pour les plus légers, et par des accélérateurs de particules de certains laboratoires de recherche spécialisés pour les plus lourds ; aucun isotope des transuraniens dont le numéro atomique serait égal à 117 ou supérieur à 118 n'a encore jamais été observé.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||
1 | H | He | |||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | |||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |
6 | Cs | Ba | * | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
7 | Fr | Ra | * | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Uuq | Uup | Uuh | Uus | Uuo |
↓ | |||||||||||||||||||
* | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | |||||
* | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No |
En 2008, le coût de revient d'un gramme de ces éléments synthétiques était de l'ordre de 2 500 € (4 000 $) pour du plutonium 239Pu de qualité militaire, et de 37,5 millions d'euros (60 millions de dollars US) pour le californium 98Cf. C'est la raison pour laquelle les transuraniens situés au-delà du californium dans le tableau périodique n'ont jamais été produits qu'en quantités infimes — quelques centaines d'atomes tout au plus, à des fins exclusivement scientifiques.
A mesure que leur numéro atomique augmente, les transuraniens deviennent rapidement très instables. Le neptunium 93Np et le plutonium 94Pu, les plus légers d'entre eux, ont encore des isotopes dont la période radioactive se chiffre en millions d'années, mais, parmi les actinides suivants, seul le curium 96Cm atteint encore 15,6 millions d'années avec l'isotope 247Cm, et, parmi les transactinides observés, seul le dubnium 105Db atteint 16 heures avec l'isotope 268Db. Un « îlot de stabilité » avait été conjecturé sur la 8ème période parmi les superactinides, mais se trouverait plutôt, s'il existe réellement, parmi les transactinides de la 7ème période.
Les 11 premiers transuraniens sont des actinides, au même titre que le thorium et l'uranium. Les quatre plus légers — neptunium, plutonium, américium, curium — sont produits en quantités significatives au sein des réacteurs nucléaires, tandis que les sept suivants ne sont synthétisés qu'en laboratoire.
Les 14 transuraniens suivants qui ont été observés sont appelés transactinides, car situés au-delà de la série chimique des actinides dans le tableau périodique des éléments.
Les propriétés chimiques des actinides sont conformes à la périodicité observée tout au long des six premières périodes du tableau périodique, avec un comportement rappelant celui des lanthanides mais avec une plus grande stabilité des états d'oxydation élevés (+5 et +6) en raison du cortège électronique plus chargé des actinides, qui écrante davantage le noyau vis-à-vis des électrons périphériques. En revanche, les propriétés chimiques des transactinides s'écartent de la périodicité des éléments plus légers : pour Z >> 100, des effets relativistes deviennent significatifs sur des électrons en interaction avec un noyau très fortement chargé, certaines corrections induites par l'électrodynamique quantique ne peuvent plus être négligées, les approximations considérant les électrons de façon individuelle pour déterminer les orbitales cessent d'être valides, et des effets de couplage spin-orbite redistribuent les niveaux d'énergie, et donc les sous-couches électroniques : il s'ensuit que la distribution des électrons autour du noyau obéit de moins en moins aux règles bien vérifiées pour les six premières périodes, et que les propriétés des éléments dans cette région du tableau cessent d'être prédictibles en fonction de leur groupe.
Ainsi, l'élément 118Uuo devrait être un gaz rare en vertu de son positionnement en bas de la 18ème colonne, mais il s'agirait en fait d'un solide semiconducteur aux propriétés voisines d'un métalloïde, tandis que l'élément 114Uuq, qui devrait être un métal pauvre en bas de la 14ème colonne, aurait plutôt les propriétés d'un gaz rare.
Le copernicium 112Cn, situé parmi les métaux de transition, aurait également certaines propriétés le rapprochant des gaz rares et serait d'ailleurs gazeux.