Doublet (optique) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

Définition d'un doublet

En optique géométrique, un doublet est l'association de deux lentilles dont les centres optiques sont S1 et S2, séparées d'une distance s2 = S1S2.

Formules

Le point B a pour image le point Bi , qui sert lui-même d'objet à la lentille 2, qui en fait une image finale Bi2 Les deux formules de base sont :

ƒo / x + ƒi / xi = 1

dite de Descartes, et celle donnant le grandissement

Γ = yi / y.

Elles peuvent s'écrire sous la forme :

x_i = \frac{f_i \cdot x}{(x-f_o)} et y_i=\frac{f_i \cdot y}{(x-f_o)}

Ces formules permettent de construire l'image Bi par la détermination par le calcul algébrique de ses coordonnées xi et yi à partir des coordonnées x et y d'un point objet B.

Points principaux d'un doublet

Sur la figure ci-dessous, l'objet B est sur une droite parallèle à l'axe Ox (y est constant), qui coupe la première lentille en un point I. Son image B'1 est sur la droite IF'1.

B, O1 et B'1 sont alignés puisque les rayons passant par O1 ne sont pas déviés.

Le point B'1 sert alors d'objet à la deuxième lentille en utilisant les mêmes formules avec bien sûr en prenant comme origine l'abscisse O2 de la deuxième lentille ; l'image finale B' se trouve sur la droite JF' 2sJ est l'intersection de IF' 1 avec la deuxième lentille.

B' 1, O2 et B' 2 sont alignés puisque les rayons passant par O2 ne sont pas déviés.

Reste à constater que le lieu de l'image finale B' 2 est une droite passant par F' , foyer image de l'ensemble, et que ce point F' est l'image du foyer image F' 1 de la première lentille par la deuxième lentille, soit d'après la formule de Newton vérifiant :

F2F' 1 × F' 2F' = ƒ2 × ƒ'2

Notons au passage que le foyer objet F du doublet a pour image par la première lentille le foyer objet F2 de la deuxième lentille, ce qui s'écrit :

F 1F × F' 1F2 = ƒ1 × ƒ'1

F1 foyer objet de la première lentille a pour image par l'ensemble du doublet le foyer image de la deuxième lentille F' 2 ; ceci s'écrit :

FF 1 × F'F' 2 = - ƒ1 · ƒ'1 · ƒ2 · ƒ'2 / (F' 1F2)2 = ƒ1 · ƒ2 / F' 1F2 × ƒ' 1 · ƒ'2 / F2F' 1

C'est avec ces formules que l'on peut vérifier la position des points dits cardinaux sur la figure ci-dessous.

Figures géométriques

Ci-dessous une animation où en gris sont représentées les lentilles minces. L'animation montre, par la construction géométrique:

  • en rouge: comment procéder pour trouver les foyers et plans prnicipaux du doublet.
  • puis en bleu: comment trouver l'image B' finale en trouvant d'abord B'1 produit par L1 et qui sert d'objet pour L2.

Applications

Page générée en 0.088 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise